
Oratcl

U S E R ’ S G U I D E A N D R E F E R E N C E

2

Oratcl User’s Guide and Reference:
Scripting Oracle applications with the Tcl/Tk language

 Todd M. Helfter
811 Beverly Dr.

Sumemerville, SC 29485

Revision 5

Revision 8

Table of Contents
Preface...1
Acknowledgments...2
Extending TCL .. 3
Oratcl Release History .. 5
Minimum Requirements for proper Oratcl operation ... 6
Tcl / Tk .. 6
MS Windows XP, 2000, 2003 ... 6

ActiveTcl Installation ... 6
Oracle Instant Client for Windows Installation 8

Solaris 8,9 & 10 .. 10
Tcl Building and Installing ... 15
Oratcl Building and Installing .. 15
Oracle Instant Client for Solaris Installation .. 17

RedHat Enterprise Linux 3, 4, 5 .. 20
Tcl rpm download and install for x86 linux .. 20
Oratcl rpm download and install for x86 linux 21
Oracle Instant Client for Linux Installation for x86 linux 22
Tcl rpm download and install for x86-64 linux 22
Oratcl rpm download and install for x86-64 linux 22
Oracle Instant Client for Linux Installation for x86-64 linux 22

Managing Oracle connections .. 23
oralogon .. 23

local connections .. 23
remote connections using local naming (TNSNAMES) ... 23
remote connections using Easy Connect .. 25
SYSDBA, SYSOPER and SYSASM connections (Oratcl 4.5) .. 26
local SYSDBA and SYSOPER connections (Oratcl 4.1 -> Oratcl 4.4) 26
Additional options to oralogon ... 26
Error codes and handling. ... 27

Revision 8

oralogoff .. 28
Managing Oracle transactions .. 30

oracommit ... 30
oraroll .. 30
oraautocom ... 31

Performing SQL Queries and DML Statements ... 32
Oratcl statement-handle .. 32
oraopen ... 32

statement-handle limits ... 32
oraclose ... 33
oraparse .. 34
orabind .. 35
oraexec .. 36
orafetch ... 37

Altering Oratcl’s default behavior .. 38
oraconfig ... 38

Oracle DATE types ... 40
Querying Date Fields .. 40
Inserting and Updating Date Fields .. 41

PL/SQL stored procedures ... 43
PL/SQL REF CURSOR variables ... 47
Oracle Error Handling and Introspection .. 50

oramsg .. 50
oradesc .. 55
oraldalist .. 56
oracols ... 57

Oracle LONG and LONG RAW types ... 58
Operations with BLOB and CLOB data types. .. 60

oralob .. 60
Historic Shortcut Commands .. 63

orasql ... 63
orabindexec ... 63
oraplexec ... 64

Slave Interpreters ... 65
Array DML ... 66
Multithreading ... 69
Asynchronous Transaction Processing .. 70
Linking Oratcl to ‘C’ programs..71

Makefile ... 71

Revision 8

main.c .. 71
test.tcl .. 72
Case Study: ... 73

Loading Oratcl from a starkit...74
MS Windows starkit using Oratcl and the Oracle instant client. 74

Using Oratcl in CGI scripts...76
Biography .. 78
Glossary .. 79

Revision 8

Preface
Tcl is an extraordinary scripting language superior to many other Unix shell languages. It was created

by John Ousterhout in the late 80’s. A comprehensive History of Tcl is available in John’s own words
from: http://www.tcl.tk/about/history.html

Without this original spark of creative genius and that of Oratcl’s creator Tom Poindexter, there would
be no point to this book.

This book is meant to be a guide to all levels of expertise in using the functionality provided by the
Oratcl extension of the TCL language. It is assumed that the reader of this book will have a basic
understanding of the use of the TCL language. This book will not attempt to instruct in the use of TCL
beyond the examples required to demonstrate how to use TCL to interact with the Oracle database. There
are many fine books on the Tcl language, I personally can recommend “Practical Programming in TCL and
TK” by Brent B. Welch, Ken Jones and Jeffrey Hobbs.. It is particularly important for those considering
the use of Oratcl to understand the use of TCL, especially it’s concepts of lists, hashes, and string
manipulation.

Revision 8 1

http://www.tcl.tk/about/history.html

Acknowledgments
There are several individuals and organizations I need to thank. I’m sure that there are many more of

you, please don’t feel left out.

Tom Poindexter : Tom is the creator and first advocate of Oratcl. He was involved with this project
long before I came along. I would like to thank him for his efforts and support and for always having the
time for a newcomer with some upgrade requests. Tom asked me to take over as the project administrator
in 1999, and since that time, I’ve tried to keep Oratcl as close to his original design as possible.

Purdue University : In the mid 90’s, I became involved with a project at Purdue University called
ACmaint 3.0. This project used embedded Tcl interpreters and was designed to be database agnostic. As a
database developer with a track record, I was added to the development team to work on migration methods
from an older version and Oracle integration and performance tuning. The original design used a pseudo-
tty running Sql*Plus and a series of pipelines to allow Tcl (version 7.2) to pattern match the output into
success or failure results. The addition of Oratcl to this process allowed for a 60% performance increase.
The University as a whole benefited from Oratcl, but personally I must thank a few individuals: John Steele,
Scott Ksander and Rob Stanfield for creating a work environment where personal IT interests could be
pursued. Go Boilers

DataPipe : My current employer DataPipe is supporting my efforts to write this book with donated
hardware and personal encouragement.

My wife Anne : For always suggesting I can do things a little bit better, and for unfailingly showing
interest in my computer hobbies.

Revision 8 2

Chapter 1

Extending TCL
Tcl is an interpreted language. Tcl is embeddable and extensible, and has been widely used since its

creation in 1988 by John Ousterhout. There are many available extensions to the Tcl language. Since the
addition of the loadable package mechanism to Tcl, these extension are now referred to as packages.
Before the package command was added, ‘C’ based extensions to the Tcl language had to be compiled and
linked into the Tcl shell program. Thus it is common to see references to ‘oratclsh’ in the early
documentation of the Oratcl extension. In fact, Oracle corporation still includes an ‘oratclsh’ program with
the database up to and including Oracle 11g. This version of the Oratcl extension is quite old and has some
non-public functionality added to it by Oracle. Checking my 11g database, I see that the provided oratclsh
uses Tcl version 8.2.3. and a customized Oratcl version, I believe based on the Oratcl 2.3 release. I will
have to get Tom Poindexter to confirm.

Tom Poindexter adds the following historic recollection of his efforts.

“I started development of Oratcl after the project I was working on at the time began using Oracle as a
database system during the summer of 1993. I had been using Tcl for about one and a half years at a
previous job, where I developed Sybtcl, a Tcl interface to the Sybase database system. Developing Sybtcl,
and applications using Tcl/Tk and Sybtcl, proved to me that Tcl/Tk was a great tool for rapid development
of systems and application programs.”

“I borrowed heavily from Sybtcl while I was developing Oratcl. While the two C interfaces
libraries (DB-Lib for Sybase, OCI for Oracle) were quite different, the structure of the two Tcl
interfaces roughly followed the same principles, namely that interface should simplify common tasks,
while still allowing the programmer access to database specific functionality. In November 1994, I
started a consultantcy practice, and landed a long term contract at a large company that had both
Sybase and Oratcl database systems, to I was able to make enhancements to both Sybtcl and Oratcl
during that time, until 2001 when I closed my consultantcy to join a local technology start-up.”

“I wasn't aware of Oracle developers using Oratcl until I received an email from one of the Oracle
Enterprise Manager (OEM) developers. He told me that his team was using Tcl and Oratcl to build the
next version of that product (I seem to recall that the first email from the OEM developer was in
1995.) I only exchanged brief emails with that developer, and a patch or two. One of the more
strange emails was from Oracle's legal department, asking *me* to accept liability for Oracle using
my code. I replied that Oracle was free to use my software, as long as they abided by the terms of the
Oratcl license agreement, which was similar to the Tcl/Tk license agreement at the time (BSD style
license, but with a notice clause to be printed in any documentation.) Oracle did publish the Oratcl
copyright notice in the Oracle Enterprise Manager Administrator's manual for many years, until the
original OEM functionality was deprecated by newer code. I believe Oracle continues to ship Tcl and
Oratcl code in recent versions, at least the last time I checked.”

Revision 8 3

Chapter 1

My own efforts were a little vague in my own mind. However, having found my old email
archive, I've dug up the following efforts.

• Aug. 1997 – Worked with Tom Poindexter to get Oratcl to work with Oracle 7.3 on Windows
95.

• Aug. 1997 – Contributed the idea and sample code for 'orabindexec' and 'orasql -parseonly'.
Tom chose a slightly different implementation from the sample code. This came about from a
need to batch process a lot of data with Oratcl. (First seen in Oratcl 2.5b1 and working in
2.5b2)

• Aug. 1997 – Bug report : Oratcl caused page fault in Wish4.2 on windows, leaving child
processes running in the background. Tom fixed in Oratcl 2.5b2

• Sep. 1998 – Oratcl takes on a large role in batch processing of various education computing
tasks at Purdue University.

• Oct. 1998 – Bug report that orafetch mis-handled arguments in Tcl 8.0. Especially after an
oraplexec call.

• Dec. 1998 – contributed the first test suite for Oratcl 2.5

• Dec. 1998 – in combination with another developer (John Jackson), contributed an oratcl based
DB-backup for Oracle hot backups to the Amanda software community.

• Jul 1999 – Very, very early stab at Oratcl 2.5 in a 64b Solaris (2.7) environment with Tcl8.2

• Jul. 1999 – Scriptics corp. took over responsibility for Oratcl CVS repository.

• Aug. 1999 – A joint effort between myself and John Jackson at Purdue University, we
contributed the 'oraldalist' and 'oracurlist' functions for Oratcl 2.6. Corrected the argument
handling of the Oratcl_Fetchall() 'C' routine to properly handle list arguments. Removed
several calls to strcpy(), bcopy() and memset() for even better performance. And utilized
GetListObjElements() instead of the older string based version SplitList() for proper return
values from Orafetch().

• Aug. 1999 – Determined that calling TclpUnloadFile() on the Oracle library file caused core
dumps on exit. (This condition existed up through Oracle 9i and possibly 10). This was
caused by the Oracle library performing an atexit() call. If the library was unloaded, the
atexit() was pointing to a null address and core dumped. This all started with some of the new
features of Tcl 8.1.0 and did not occur in Tcl 8.0.5. As a result the Tcl team rewrote the
package commands to allow the unload to be skipped.

• Aug. 1999 – Contributed the code for Oratcl 2.6 to use Tcl slave and secure interpreters.
Improved the 'oraopen' command to only allow it to open statement handles on login handles
opened in the same interpreter. Enhanced the oralogoff command to only close connections
opened in the same interpreter.

Revision 8 4

Chapter 1

• Apr. 2000 – Converted Oratcl to use OCI8, released as Oratcl 2.8 and shortly after, renamed to
Oratcl 3.0 by request for Tom Poindexter. This was primarily because 3.0 was not 100%
backwards compatible with 2.x. It was at this time that Tom officially passed the 'official
developer' torch for Oratcl to me.

• Jun 2000 – Oratcl 3.0 released for production.

• Aug 2001 – Oratcl 4.0 released, this is the first thread-safe version of Oratcl, compatible with
the 'thread' Tcl package.

Oratcl Release History

Version 1.0, July, 1993
Version 2.0, November, 1993
Version 2.1, February, 1994
Version 2.11, April, 1994
Version 2.2, October, 1994
Version 2.3, August, 1995
Version 2.4, September 1996
Version 2.41, December 1996
Version 2.5, November 1997
Version 2.6 September, 1999
Version 2.7 August, 1999
Version 3.0 June, 2000
Version 3.0.1 August, 2000
Version 3.1 October, 2000
Version 3.2 March, 2001
Version 3.3 August, 2001
Version 4.3 November, 2004
Version 4.4 March, 2005

Revision 8 5

Chapter 1

Getting Started with Oratcl

Minimum Requirements for proper Oratcl operation
Before we can start with the programming examples, we must first make sure that our environment has

the minimum requirements for the examples to function. There are three basic requirements that must exist
in the environment before we can write Oratcl applications.

1. a Tcl/Tk installation

2. the Oratcl package

3. an Oracle client

The versions of these individual pieces will determine the list of features available. Let’s work through
some sample architectures and configurations. Each of these three items are loaded in states.

Tcl / Tk
First a Tcl shell is created, typically with the tclsh (tclsh84.exe on windows, tclsh8.4 on unix)

command. After Tcl is running we instruct Tcl to load the Oratcl package via the package require Oratcl
command. When the environment is properly initialized, the Oratcl library will dynamically link to the
Oracle client library at this time, when successful, package require returns the version number of the
package loaded. When the environment is not correct, the Oratcl package will fail to load at which time an
error will be displayed.

MS Windows XP, 2000, 2003
The quickest and easiest way to prepare a MS Windows system is to obtain and install two pre-packaged

download files. First we will take care of requirements one and two. To do so, we can use ActiveTCL for
windows which includes a Tcl shell, a Tk gui console, and it includes Oratcl as well as many other popular
extensions.

For this demonstration I obtained a copy of the prepackaged installer program ActiveTcl8.4.14.0.272572-
win32-ix86-threaded.exe from the ActiveState web site: http://www.activestate.com/downloads .

ActiveTcl Installation

Follow the download instructions on the ActiveState site. And run the installer. You may modify the
installation options, but I chose all the defaults for the examples in this book. Like most MS windows based

Revision 8 6

Chapter 2

http://www.activestate.com/downloads

software, The ActiveTcl installer will add menu items to the Windows ‘Start Menu’ and includes options for
uninstalling. Navigating through the start menu, select Tclsh8.4 and a Tcl shell window will be started.

.

Figure 1 the ActiveTcl installation Figure 2 the Oratcl installation

Since Oratcl is a dynamically loaded library, on windows it will have two required files; the Oratcl44.dll file
and the pkgIndex..tcl file which provides the package loading instructions to Tcl’s package loading mechanism.
By convention, these files are located in their own directory inside the Tcl\lib folder. Using the tclsh84.exe shell
program we can attempt to load the Oratcl package into Tcl with the package require syntax..

Figure 3 tclsh84.exe window with error message

Revision 8 7

Chapter 2

This error is entirely expected, since we have not yet installed the oracle client software. If your server
already has an Oracle client and you still have this error, skip past the instant client install to the trouble shooting
section.

Oracle Instant Client for Windows Installation

For this chapter’s exercise, I downloaded the Oracle instant client software from this URL:

http://www.oracle.com/technology/tech/oci/instantclient/index.html

The instant client download site requires that you create an Oracle Technology Network identity. While I
was there, I obtained all the windows related instant client files, however only one file, the instant client basic is
needed. Since my MS Windows computer is a 32-bit platform. I downloaded and uncompressed instantclient-
basic-win32-10.2.03-20061115.zip

Oracle provides several instant client download files that provide additional functionality. The Sql*Plus files
are helpful for database connection debugging and for running ad-hoc queries, but they are not required for
Oratcl. Likewise the odbc and jdbc downloads are also not required. All instant client downloads should be
unzipped and copied into a single directory.

Before unzipping the instantclient-basic, I first created a C:\Oracle directory on my computer so that I can
drag and drop the files from the provided zip file into this directory. When finished you should see something
similar to my results.

Figure 4 Oracle instant client install

Revision 8 8

Chapter 2

So let’s try the tclsh84.exe and package require commands again.

Figure 5 tclsh84.exe with Oratcl installed and without oci.dll in the search path

Again it has failed to load the Oracle library. I have forgotten one little detail specific to the MS windows
environment. Windows will only load a dll that it can find in it’s search path. The default search path is the
current working directory and locations defined in the system PATH environment variable. So simply changing
to the oracle instant client directory allows windows to locate the oci.dll file. This of course is not a viable
option in your programming scripts.

Figure 6 tclsh84.exe with Oratcl installed after changing directory to oracle instant client location.

Revision 8 9

Chapter 2

If you are planning to deploy applications to a windows environment with the Oracle instant client, there are
a few options available. The easiest is to add the instant client location (in this case c:\oracle\instantclient_10_2)
to the windows PATH environment variable. I have done so and the examples from this book will operate on
the assumption that you have too. If your windows administrator will not let you adjust the system PATH
variable, you can update the path variable in your Tcl script using a variety of variable commands (set, append)
before loading the package. The following example demonstrates the append method.

Figure 7 altering the env(PATH) variable so Windows will load oci.dll

Success! From now on, we will be able to load Oratcl into our Tcl shells and start to make use of it’s features.

Solaris 8,9 & 10
A little special consideration needs to be taken into account when working in a Sun Solaris environment.

The most frequently asked question that I have seen regarding Oratcl on solaris has to do with 32 vs. 64 bit.
Starting with 10g, Oracle stopped producing a 32 bit version of the database software for solaris, In 9i you could
choose to install a 32 bit or a 64 bit version. This decision is most likely tied to the fact that Solaris 10 is only 64
bit as well. In Solaris 9, you could chose to operate in 32 bit or 64 bit mode, so both versions of the Oracle
database had to be produced. Oratcl is fully capable of functioning in both modes, but must be compiled properly
to do so. In fact, if Oracle, Tcl and Oratcl are all 32 bit or all 64 bit, nothing special has to be done at all. Later in
this section, I’ll explain how to use a 32bit Tcl/Oratcl combination with a 64bit database. For now, lets focus a
little bit on how to build the various versions. Luckily, it is very easy to build software in the unix environment
with a few commonly installed utilities. Source code for Tcl and Oratcl is available from the SourceForge group
pages for each package and also available via the anonymous CVS method.

First lets show the 64 bit build process for Sun Solaris. First we will create a work area to perform the
compilations and obtain the software via CVS. In the anonymous CVS process we must first log in to the remote

Revision 8 10

Chapter 2

source repository using a null password. (just hit enter). Then we can check out from the source tree the version
of Tcl that we would like to use. We will also need to log into the Oratcl cvs repository.

First, there are some things about my environment that I need to convey. I have several packages installed
(gcc, cvs). And a little configuration of my account as well. I have a $HOME/.cvsrc file with a few settings that I
find helpful. Please check the CVS man page or a reference book for specifics. I include this here so that those
following along the book will see the same results that I do.

cvs -z9 –q
update -Pd
checkout -P
rtag -a

I have a Solaris 10 installation and Oracle 10g database install. It is essential that the ORACLE_HOME
environment variable be set in your configuration.

One additional point of interest. You do not need any Oracle software installed on the server to compile
Oratcl. As demonstrated in the Windows section, Oratcl dymanically loads the Oracle client libraries at run time.
So it is possible to build the code on one server and replicate it to other servers in your environment.

jumpgate: [20] > uname -a
SunOS jumpgate 5.10 Generic_118833-24 sun4u sparc SUNW,Ultra-5_10
jumpgate: [21] > echo $ORACLE_HOME
/app/oracle/product/10.2.0/db_1
jumpgate: [22] > gcc -v
Reading specs from /opt/sfw/lib/gcc/sparc-sun-solaris2.10/3.4.2/specs
Configured with: ../gcc-3.4.2/configure --prefix=/opt/sfw --with-
ld=/usr/ccs/bin/ld --with-gnu-as --with-as=/opt/sfw/bin/gas --enable-shared
--disable-libgcj
Thread model: posix
gcc version 3.4.2

Note: for make install to work, /usr/ccs/bin needs to be in your $PATH

Revision 8 11

Chapter 2

And as you can see from the previous example, the command line syntax can get very tedious. To assist with
this, I use a little shell script that was written given to me by a Tcl developer many years ago. I call it ‘sfacvs’
(source forge anonymous cvs). And this greatly simplifies the whole CVS process for me. Here is the script. I
place this script in my personal bin directory which I’ve added to my path.

#!/bin/bash
sfacvs
rdir=$1
shift
cvs -d:pserver:anonymous@${rdir}.cvs.sourceforge.net:/cvsroot/$rdir $*

So here is the first example over again, using the script, much easier to perform, and much less likely to be
frustrated with long command lines and mistyped arguments.

Revision 8 12

Chapter 2

Now lets obtain the source code. For this operation it is useful to know some of the CVS tags, so that we can
obtain specific versions. A tag is a way for source code developers to assign a consistent public label to a group
of source files, so that when we check out that tag we get all the right files. Tcl tags follow this name scheme:
core-MAJOR-MINOR-branch. So if, for instance, we want the Tcl 8.4 branch, the tag is core-8-4-branch.

core-8-3-branch
core-8-4-branch
core-8-5-branch

Revision 8 13

Chapter 2

Oratcl uses a similar tag naming scheme: These are all the tags available in the CVS repository. Although all
these versions are available via CVS. Each version has additional features and bug fixes available. The current
version is 4.4, and that is the one we will use in this example. In a later chapter that covers the history and feature
improvement of the various versions, there will be a compatibility matrix to assist with determining which
versions are right for you. If you are just starting with a project, then the current production releases are Tcl
8.4.17 and Oratcl 4.4. These versions are fully compatible with the modern Oracle database versions 8i, 9i, 10g
and 11g. If an older version of Oracle or legacy Oratcl code is being maintained, then the chapter on upgrading
will be a good place to start.

scriptics-sc-2-7-branch
oratcl-3-0-branch
oratcl-3-0-1-branch
oratcl-3-1-branch
oratcl-3-2-branch
oratcl-3-3-branch
oratcl-4-0-branch
oratcl-4-1-branch
oratcl-4-2-branch
oratcl-4-3-branch
oratcl-4-4-branch
oratcl-4-5-branch (not yet created)

Utilizing the sfacvs script listed above, we must check out the Oratcl version we want to build.

Revision 8 14

Chapter 2

Tcl Building and Installing
We now have all the source code we will need. So first we will build a 64 bit version of Tcl for solaris. To

do so, we need to know where the software will be installed. The installing user has to have write access to the
install location. For system administrators with root access, the install location can be one visible system wide.
For those without root access, a location in your home directory can be a candidate. In this example I will use
$HOME/app as the install location.

jumpgate: [23] > ls
./ ../ oratcl4.4/ tcl8.4/
jumpgate: [24] > mkdir $HOME/app
jumpgate: [25] > cd tcl8.4/unix

Building Tcl is a three step process. A configure step that samples the environment, a make step to compile
the code and an installation step. First we must run the configure utility to create the Makefiles. ./configure –help
lists all the possible options. We need two of them for a 64bit Solaris build. These are –enable-64bit and
--enable-64bit-vis

jumpgate: [26] > ./configure --prefix=$HOME/app/tcl8.4 --enable-64bit --enable-
64bit-vis
… snip …
jumpgate: [27] > make
… snip …
jumpgate: [28] > make install
… snip …
jumpgate: [29] > ls -al $HOME/app/tcl8.4/
total 12
drwxr-xr-x 6 tmh other 512 Dec 8 12:10 ./
drwxr-xr-x 3 tmh other 512 Dec 8 12:10 ../
drwxr-xr-x 2 tmh other 512 Dec 8 12:10 bin/
drwxr-xr-x 2 tmh other 512 Dec 8 12:10 include/
drwxr-xr-x 3 tmh other 512 Dec 8 12:10 lib/
drwxr-xr-x 5 tmh other 512 Dec 8 12:10 man/

I took the additional step of adding $HOME/app/tcl8.4/bin to my PATH environment variable.

jumpgate: [32] > which tclsh8.4
/export/home/tmh/app/tcl8.4/bin/tclsh8.4
jumpgate: [33] > tclsh8.4
% info patchlevel
8.4.17

Oratcl Building and Installing
Now we can proceed with the Oratcl build using the same method as we did for Tcl (configure/make/make

install).

Revision 8 15

Chapter 2

jumpgate: [37] > cd chap2/oratcl4.4/
jumpgate: [38] > ./configure --prefix=$HOME/app/tcl8.4 --enable-64bit --enable-
64bit-vis
jumpgate: [39] > make
jumpgate: [40] > make install

When installed with this method, the Oratcl library files are placed in a directory located inside the Tcl lib
directory. To be on the safe side lets compare the ELF versions for all the relevant files.

Ok we are good to go, all files have the same ELF version. We are ready for Oratcl scripting.

Revision 8 16

Chapter 2

Success!

So now lets cover the alternative configuration. 32 bit Tcl and Oratcl with the 64 bit database. Since Oratcl
dynamically loads the Oracle client library at run time, it has to know where to look for the file. Lucky for us,
Oracle has provided a 32 bit compatibility library. In order for Oratcl to make use of this library, it has to know
where to look for it. To simplify matters an additional environment variable is recognized by Oratcl to help with
locating the Oracle client library. The variable ORACLE_LIBRARY should be set to the location of the Oracle
client library libclntsh.so when needed. For this demonstration, I’ve compiled Tcl and Oratcl in 32 bit mode. The
steps are the same as above, only the –enable-64bit and –enable-64bit-vis parameters are eliminated.

jumpgate: [93] > $HOME/app/tcl8.4-32/bin/tclsh8.4
% package require Oratcl
Oratcl_Init(): Failed to load /app/oracle/product/10.2.0/db_1/lib/libclntsh.so
with error ld.so.1: tclsh8.4: fatal:
/app/oracle/product/10.2.0/db_1/lib/libclntsh.so: wrong ELF class: ELFCLASS64

Well that clearly did not work. When Tcl is 32 bit and Oracle is 64 we have compatibility problems. Let’s
provide a hint to Oratcl to look in a non-standard location, namely the 32 bit compatibility libraries provided by
Oracle.

% set ::env(ORACLE_LIBRARY) $::env(ORACLE_HOME)/lib32/libclntsh.so
/app/oracle/product/10.2.0/db_1/lib32/libclntsh.so
% package require Oratcl
4.4

Oracle Instant Client for Solaris Installation
It is often practical to use the Oracle Instant client for Solaris.: Oracle provides an instant download for the

Solaris operating environment as well as many others. There are two versions to choose from: a 32-bit and 64-bit
version. I downloaded both versions for this chapter. I began by creating an oracle32 and an oracle64 directory. I

Revision 8 17

Chapter 2

placed each file in the respective directory and unzipped the archive. The archives unzip into an
instantclient_10_2 directory.

jumpgate: [40] > ls oracle*/*.zip
oracle32/instantclient-basic-solaris6432-10.2.0.3-20070101.zip
oracle64/instantclient-basic-solaris64-10.2.0.3-20070101.zip

These are the files I have:

So we are all set to use both 32-bit and 64-bit Tcl binaries.

NOTE with Oracle instant client for Solaris, Oratcl always requires the ORACLE_LIBRARY environment
variable to be set. And the instant client location has to be appended to the LD_LIBRARY_PATH environment
variable before tclsh is started.

Revision 8 18

Chapter 2

Figure 1 Solaris with 32 bit Oracle instant client (csh/tcsh) example

Figure 2 Solaris with 64 bit Oracle instant client (csh/tcsh) example

Once the package is able to load, then the Tcl interpreter is ready for the rest of the examples in this book. Before
we depart the Solaris section, I think a few error conditions should be covered.

Revision 8 19

Chapter 2

Figure 3 Solaris with 32 bit Oracle instant client (sh/bash) example

Figure 4 Solaris with 64 bit Oracle instant client (sh/bash) example

RedHat Enterprise Linux 3, 4, 5
Tcl rpm download and install for x86 linux

The installation of Oratcl on linux is quite possibly the easiest of all platforms. Unlike the Solaris OE or on
Windows, Tcl is included in many Linux distributions. I’ve two test environments at my disposal and I
regularly use both. In fact, my primary development platform is a Pentium based HP server running RedHat ES
5. Whether your server uses ‘yum’ or ‘up2date’, or if you are installing from a CD, there is very likely a tcl rpm
available for an automatic install. To determine if you have tcl installed use the rpm query command

[oracle@dl320 ~]$ rpm -qa | grep tcl
tclx-8.4.0-5.fc6

Revision 8 20

Chapter 2

tcl-8.4.13-3.fc6

On my server, tcl is already installed. Not a particularly new version by any means, but quite suitable for our
purposes. If a newer version of Tcl is preferred, refer to the CVS checkout and compile methods in the Solaris
section of this chapter. The steps to build from source code and install are identical in linux. If you are happy
with the Tcl prebuilt for linux, then one of the many available rpm’s will suffice. For example, with the yum
package maintenance utility: yum install tcl will do the trick, and when using up2date, up2date tcl will also
work.

[oracle@dl320 ~]$ which tclsh
/usr/bin/tclsh
[oracle@dl320 ~]$ tclsh
% info patchlevel
8.4.13
% package require Oratcl
can't find package Oratcl
% exit

Oratcl rpm download and install for x86 linux
There are several download files available from the Oratcl project pages at http://oratcl.sourceforge.net.

Included in the list of downloads is a preconfigured rpm for x86 linux.. Either browse on over to the project
page in your favorite web browser, or use any http style download utility. The two commands below were all I
needed for the installation.

wget http://downloads.sourceforge.net/oratcl/oratcl-4.4-1.i386.rpm
rpm –i oratcl-4-4-1.i386.rpm

A snapshot of the installation

 [root@dl320 oracle]# wget http://downloads.sourceforge.net/oratcl/oratcl-4.4-
1.i386.rpm
--16:49:16-- http://downloads.sourceforge.net/oratcl/oratcl-4.4-1.i386.rpm
Resolving downloads.sourceforge.net... 66.35.250.203
Connecting to downloads.sourceforge.net|66.35.250.203|:80... connected.
HTTP request sent, awaiting response... 302 Found
Location: http://superb-west.dl.sourceforge.net/sourceforge/oratcl/oratcl-4.4-
1.i386.rpm [following]
--16:49:16-- http://superb-west.dl.sourceforge.net/sourceforge/oratcl/oratcl-
4.4-1.i386.rpm
Resolving superb-west.dl.sourceforge.net... 209.160.59.253
Connecting to superb-west.dl.sourceforge.net|209.160.59.253|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 37613 (37K) [application/x-redhat-package-manager]
Saving to: `oratcl-4.4-1.i386.rpm'

Revision 8 21

Chapter 2

http://downloads.sourceforge.net/oratcl/oratcl-4.4-1.i386.rpm
http://oratcl.sourceforge.net/

100%
[===>]
37,613 118K/s in 0.3s

16:49:17 (118 KB/s) - `oratcl-4.4-1.i386.rpm' saved [37613/37613]

[root@dl320 oracle]#
[root@dl320 oracle]# rpm -i oratcl-4.4-1.i386.rpm

And now Oratcl is installed in /usr/lib/Oratcl4.4 and tclsh is able to locate it.

% package require Oratcl
4.4

Oracle Instant Client for Linux Installation for x86 linux
Tcl rpm download and install for x86-64 linux
Oratcl rpm download and install for x86-64 linux
Oracle Instant Client for Linux Installation for x86-64 linux

Revision 8 22

Chapter 2

Managing Oracle connections
oralogon

In order for Oratcl to perform database operations, we must first connect to a database. Oratcl provides the
oralogon command to Tcl. This command is used to establish connections to one or many oracle databases. The
oralogon command will return a handle-string that will be used as a parameter to other Oratcl commands. The
handle-string returned by oralogon is a unique value that will allow other the other commands to uniquely
identify the memory structures created during a database connection. Through out this book and the example
code, this return value will be referred to as the logon-handle. The login-handle is a string composed of the word
“oratcl” concatenated with a numeric sequence. The first logon-handle returned after loading the library will be
“oratcl0”, the next “oratcl1” etc. The syntax for the command is presented here.

oralogon connect-string \
?-sysdba? \
?-sysoper? \
?-sysasm? \
?-async? \
?-failovercallback procname?

The oralogon command always requires a connect-string parameter as the first argument.

local connections
Here is a simple example using a database running on the same server. The first step is to make sure that the

required environment variables are set. For the local database connection, the connect-string is in the form of
username/password.

[thelfter@dl320 ~]$ tclsh8.5
% set ::env(ORACLE_HOME) /u01/app/oracle/product/11.1.0/db_1
/u01/app/oracle/product/11.1.0/db_1
% set ::env(ORACLE_SID) orcl11g
orcl11g
% package require Oratcl
4.4
% oralogon scott/tiger
oratcl0

For a local database connection like the one shown above, the same environment variables that you would
need to have set for Sql*Plus to work, are also required for Oratcl. Oratcl uses the same connection libraries as
Sql*Plus. As show in the example, the logon-handle string returned is in the form of ‘oratcl’ concatenated with a
unique digit, in this case a 0. So the logon-handle string is ‘oratcl0’

remote connections using local naming (TNSNAMES)
For a remote database connection, the connect string takes on a new form of

username/password@connect_identifier. This type of connection requires fewer environment variables, as the

Chapter 3

ORACLE_SID variable is no longer required to identify the target database. You may choose to utilize any of
the Sql*Net provided network naming mechanisms.

ORCL11G =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = dl320)(PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = orcl11g)
)
)

ORCL10G =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = dl320)(PORT = 1522))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = orcl10g)
)
)

This example shows how to use local naming (tnsnames.ora). The tnsnames.ora file used by the reference
system is included below. Two entries are listed, one for a 11gR1 database and one for a 10gR2 database. Two
database connections are made, one to each of the local database instances.

[thelfter@dl320 ~]$ tclsh8.5
% set ::env(ORACLE_HOME) /u01/app/oracle/product/11.1.0/db_1
/u01/app/oracle/product/11.1.0/db_1
% package require Oratcl
4.4
% oralogon scott/tiger@orcl11g
oratcl0
% oralogon scott/tiger@orcl10g
oratcl1

As demonstrated by this example, one of the more useful features of Oratcl is the ability to connect to
multiple databases simultaneously.

If local naming is not available, then you may specify the full Sql*Net name as part of the connect string.

[thelfter@dl320 chapter4]$ tclsh8.5
% set ::env(ORACLE_HOME) /u01/app/oracle/product/11.1.0/db_1
/u01/app/oracle/product/11.1.0/db_1
% package require Oratcl
4.4
% oralogon scott/tiger@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=dl320)
(PORT=1521))(CONNECT_DATA=(SERVICE_NAME=orcl11g)))
oratcl0

Chapter 3

% oralogon scott/tiger@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=dl320)
(PORT=1522))(CONNECT_DATA=(SERVICE_NAME=orcl10g)))
oratcl2

Now is when a little Tcl scripting starts to really become useful. Trying to get connect strings like these
formatted properly every time it is used can become an easy point of failure. A little helper function can be very
useful at a time like this. Here is the last example again with a user defined procedure to help with the
formatting.

Note : The rest of the examples in this chapter are presented in Tcl script format.

set ::env(ORACLE_HOME) /u01/app/oracle/product/11.1.0/db_1
package require Oratcl

proc build_connect_string {user pass proto host port service} {
set addr [format {ADDRESS=(PROTOCOL=%s)(host=%s)(port=%s)} \

$proto \
$host \
$port]

set data [format {CONNECT_DATA=(SERVICE_NAME=%s)} $service]
set desc [format {(DESCRIPTION=(%s)(%s))} $addr $data]
set conn [format {%s/%s@%s} $user $pass $desc]
return $conn

}

set cs1 [build_connect_string scott tiger tcp dl320 1521 orcl11g]
oralogon $cs1

set cs2 [build_connect_string scott tiger tcp dl320 1522 orcl10g]
oralogon $cs2

remote connections using Easy Connect
Starting with Oracle 10g and including the 10g Instant Client, Oracle introduced another way of connecting

to a networked data source. A method that will at once feel easier to read and easier to code. Oracle refers to this
method as an Easy Connect (URL) style service name and it is formatted as follows:

//host:[port][/service name]

Using the reference environment, these are valid Easy Connect (URL) style connect commands:

set ::env(ORACLE_HOME) /u01/app/oracle/product/11.1.0/db_1
package require Oratcl
oralogon scott/tiger@//dl320:1521/orcl11g
oralogon scott/tiger@//dl320:1522/orcl10g

Chapter 3

SYSDBA, SYSOPER and SYSASM connections (Oratcl 4.5)
Using the latest version 4.5 of Oratcl, local or remote SYSDBA, SYSOPER or SYSASM connections have

been implemented. These types of connections can be obtained with commands that use the one of the new
command options –sysdba, -sysoper or –sysasm. It is important to note that SYSASM connections are only
possible to an Oracle 11g ASM instance.

sysdba connections
oralogon scott/tiger –sysdba
oralogon scott/tiger@orcl11g -sysdba
oralogon scott/tiger@//dl320:1521/orcl11g -sysdba
sysoper connections
oralogon scott/tiger –sysoper
oralogon scott/tiger@orcl11g -sysoper
oralogon scott/tiger@//dl320:1521/orcl11g -sysoper

If you use more than one of these options, Oratcl will use the last one. The following command would result
in a SYSDBA connection.

oralogon scott/tiger –sysdba –sysoper -sysdba

local SYSDBA and SYSOPER connections (Oratcl 4.1 -> Oratcl 4.4)
Using Oratcl versions 4.1 through 4.4, it is possible to obtain a SYSDBA or SYSOPER connection only to

a locally running database.

[thelfter@dl320 ~]$ tclsh8.5
% set ::env(ORACLE_HOME) /u01/app/oracle/product/11.1.0/db_1
/u01/app/oracle/product/11.1.0/db_1
% set ::env(ORACLE_SID) orcl11g
orcl11g
% package require Oratcl
4.4
% oralogon sysdba
oratcl0
% oralogon sysoper
oratcl1

Additional options to oralogon
The optional -async argument specifies that all commands allowing asynchronous (nonblocking) operation

will do so. The commands affected by this advanced option are the Oratcl DML primitives: oraparse, oraexec,
orafetch and those macro functions that make use of the primitives such as orasql, orabindexec and oraplexec.
See the chapter on Asynchronous Transaction Handling for more details as coding in the asynchronous mode
requires a variety of script changes.

Chapter 3

The optional -failovercallback procname arguments provide Transparent Applicaton Failover (TAF)
functionality to Oratcl. The given procname is invoked automatically on a TAF failover event. It is often used
to re-execute "alter session" statements after the automatic reconnect to another RAC node. Here is an example.

Error codes and handling.

Limitations:

It is not possible to say what the maximum number of connections to a particular database will be. The
functional limit depends on the specific Oracle database. If establishing a dedicated server connection, the limit
can be estimated by subtracting the number of existing processes from the processes init.ora parameter. For
instance, if you have processes=500 in your init.ora (or spfile) and a relatively unused (no other users connected)
database, then you can expect to be able to open about 485 connections. If operating with the shared server
configuration, then thousands of connections are possible depending on the shared server configuration. Refer to
the Oracle net services for additional information. In addition to these limits, if the user account has been
assigned to a profile that limits connections, then that will also impact the total number of connections.

Behind the Scenes: What does oralogon do?

For those Tcl API programmers out there, the logon-handle string is a Tcl_HashEntry created with
Tcl_CreateHashEntry(). A pointer to the Oratcl LogPtr structure is stored as the hash value. This allows the
other Oratcl commands requiring access to the LogPtr structure an efficient way to access the data structure
without passing large amounts of data through the Tcl command API..

While this is not an OCI programming manual. I do believe that a short listing of the various OCI API
functions utilized by the oralogon command will be helpful. Since the source code is readily available, I will not
be including the actual code. The Oracle API calls (in order) used by this function are:

OCIEnvCreate();
OCIHandleAlloc(…, OCI_HTYPE_ERROR, …);
OCIHandleAlloc(…, OCI_HTYPE_SERVER, …);
OCIHandleAlloc(…, OCI_HTYPE_SVCCTX, …);
OCIServerAttach()
OCIAttrSet()
OCIHandleAlloc(…, OCI_HTYPE_SESSION, …);
OCIAttrSet(…, OCI_ATTR_USERNAME, …);
OCIAttrSet(…, OCI_ATTR_PASSWORD, …);
OCISessionBegin()
if –failovercallback then
 OCIAttrSet(…, OCI_ATTR_FOCBK, …);

Chapter 3

if –async then
 OCIAttrSet(…, OCI_ATTR_NONBLOCKING_MODE, …);

Historic information:

If you have been tasked with maintaining or even upgrading applications that use older versions of Oratcl
(3.0 or older), you will see that the documentation and programs refer to a LDA. A logon-data-area (LDA) was
a data structure provided by oracle in the OCI6 and OCI7 (maybe even older) API. It is very common to see
Oratcl code referring to an lda variable such as in the following sample. In fact I still refer to the logon-handle
return string as an lda in most of the automatic tests and in many of my programs as well.

set lda [oralogon scott/tiger]

There is nothing wrong with referring to the logon-string as an lda, as in the context of the Oratcl application,
this is really only a variable name and it has enough historic contexts for others reading your code to understand
what you mean.

oralogoff

Once we have created oracle sessions, the next natural question is how are they closed. The oralogoff
command provides the ability to disconnect the session identified by the logon-handle parameter. It has a very
simple syntax.

oralogoff logon-handle

The logon-handle passed to the oralogoff command must have been previously created by the oralogon
command. In addition to disconnecting the Oracle session, oralogoff performs the following functions:

• All uncommitted DML transactions are committed (for all statement-handles created with oraopen and
this logon-handle).

• All statement-handles created with the oraopen command using the logon-handle are closed.

• All memory structures associated with the logon-handle and the now closed statement-handles is freed.

• The logon-handle string is removed from the internal Tcl hash causing all subsequent Oratcl commands
to raise an error if the logon-handle string is used as a parameter.

A properly coded application will specifically close any sessions that it has opened when it is through with
them, however when exiting the Tcl shell or closing the Tcl interpreter, Oratcl will automatically close all
sessions with the same results as if the session were logged off manually.

Chapter 3

 The example for oralogoff is quite simple.

set lh [oralogon scott/tiger]
oralogoff $lh

Error codes and handling

The oralogoff command will return a number value return code. Unlike many other return code systems
where a 1 is a success and a 0 is a failure, Oratcl return codes operate using OCI return values. The return code
OCI_SUCCESS is equal to 0. Therefore a return code of 0 is a success.

Behind the Scenes: What does oralogoff do?

The Oracle API calls used by this function are:

OCISessionEnd();
OCIServerDetach();

Chapter 3

Managing Oracle transactions

oracommit

oracommit logon-handle

In many database programs, it is helpful to allow for periodic commits. The purpose of the oracommit
command it to issue a commit to the oracle database. When issued, the commit affects all DML performed by
any statement-handle opened with the logon-handle. This is an important consideration to take into effect when
writing programs using Oratcl. It is possible, even desirable to open multiple statement-handles using a single
connection to the database, the concept is similar to having multiple cursors in a pl/sql procedure. The Oracle
API calls that arrange for the commit operate on the logon-handle data structures and thus issue the commit (or
rollback) to the entire connection.

Best practices. In the old days of Oracle, before the UNDO tablespace and auto expanding data files, it was
common to run into the dreaded snapshot too old error. This error was typically encountered when the rollback
segment assigned to the user’s session filled up. The Oracle database of today is much more forgiving in this
area, but even so, it is best to have your applications perform a commit periodically. Just like programming in
pl/sql, proper commit handling can have a serious impact on your application's performance. Committing every
transaction immediately is likely a good step for OLTP applications, but for large data set loading and
processing, committing too frequently will seriously impact database performance.

Error codes and handling.

An error will be raised if the logon-handle parameter is invalid.

Behind the Scenes: What does oracommit do?

The Oracle API call used by this function is:

OCITransCommit();

oraroll

oraroll logon-handle

The alternative to committing a pending transaction is the rollback. Issuing the rollback will undo any DML
transactions performed by any statement-handle opened with the logon-handle since the last time the logon-

Chapter 5

handle was commited. Even DML statements issued with a statement-handle that has been closed with oraclose,
will be rolled back.

Error codes and handling.

Again an error is raised if the logon-handle parameter is invalid.

Behind the Scenes: What does oraroll do?

The Oracle API call used by this function is:

OCITransRollback();

oraautocom

oraautocom logon-handle boolean

There are times in applications, where data integrity is more important than performance, many OLTP
applications are constructed in this way. When DML transactions are important enough to require instant
committing, Oratcl has made this easy for you by providing an oraautocom command. This command has two
parameters, a logon handle and a boolean. The command enables or disables the automatic commit of SQL
manipulation statements using any statement-handle opened through the connection specified by logon-handle.
The boolean parameter may be any value that Tcl will evaluate to boolean true (1, on, true) to enable automatic
commit, or boolean false (0, off, false) to disable. After setting the new automatic commit status, oraautocom
returns the new commit status (1 for on, 0 for off) for validation purposes. The automatic commit feature defaults
to "off".

turn on autocommit
oraautocom $lh 1
oraautocom $lh on
oraautocom $lh true
turn off autocommit
oraautocom $lh 0
oraautocom $lh off
oraautocom $lh false

In function, all this command does is set or unset a flag that is used by the oraexec command. This flag sets
an OCI level value that instructs the oracle database to perform a commit for the session after executing the
command passed.

Chapter 5

Performing SQL Queries and DML Statements
Now that we have the basic fundamentals of package loading and establishing database connections out of

the way, its now time to get to where the real action is, running those SQL queries and DML statements is what
we are here for. Programmers of PL/Sql packages might notice some similarities between the procedures used
here and those used in PL/Sql.

Oratcl statement-handle
All DML and SQL operations are performed in Oratcl using a statement-handle parameter. A statement-

handle in Oratcl is the glue between Tcl and an Oracle OCI handle.

Before detailing each command individually, lets start with a small example. Using the sample schema
loaded into the scott/tiger oracle account. Here is a sample script to insert a row into the EMP table of the
scott/tiger sample schema.

package require Oratcl
set lh [oralogon scott/tiger]
set sh [oraopen $lh]
set sql {insert into emp (empno, ename, job, mgr, sal, deptno) \

values (8000,'WELLS','VP', 7439, 4000, 10)}
oraparse $sh $sql
oraexec $sh
oracommit $lh
oraclose $sh
oralogoff $lh

oraopen

oraopen logon-handle

The purpose of oraopen is to create a statement-handle. The oraopen command returns a handle string to
be used with subsequent Oratcl commands that require a statement-handle parameter. The logon-handle
parameter must be a valid login-handle previously obtained from oralogon. It is possible and even desirable to
open multiple statement handles using a single logon-handle. The oraopen command raises a Tcl error if the
logon-handle specified is not valid.

statement-handle limits
The limit to the number of simultaneous open statement-handles is determined per connection by the Oracle

database configuration, the init.ora parameter open_cursors determines the actual limit to the statement-handle
count.

Behind the Scenes: What does oraopen do?

The Oracle API call used by this function is:

OCIHandleAlloc(…, OCI_HTYPE_STMT, …);

Revision 8 32

Chapter 5

oraclose

oraclose statement-handle

Close the specified statement-handle and free any memory segments linked to it. The oraclose command
raises a Tcl error if the statement-handle specified is not open. Now that we can open and close statement-
handles, we can move on towards using them to perform SQL queries which will take the form of:

Behind the Scenes: What does oraclose do?

The Oracle API call used by this function is:

OCIHandleFree();

Now that we can open and close statement-handles, we can move on towards using them to perform SQL
queries which will take the form of:

oraparse Send the SQL statement to the database to be parsed
Determine the columns being selected

orabind optional step:
links data values from Tcl to placeholders in the SQL statement

oraexec send the SQL statement to the database for execution
orafetch obtain the result set from the database

A DML statement will follow a similar course, only omitting the orafetch, as there will not be return data for
an INSERT, UPDATE, DELETE statement.

oraparse Send the SQL statement to the database to be parsed
Determine the columns being selected

orabind optionally step:
link data values stored in Tcl to placeholders in the SQL statement

oraexec send the SQL query to the database for execution

Similarly an anonymous PL/SQL statement uses the same commands

oraparse Send the PL/SQL statement to the database to be parsed
Determine the pl/sql parameters

orabind optional step:
links data values from Tcl to placeholders in the PL/SQL statement

oraexec send the PL/SQL statement to the database for execution
orafetch obtain the OUT parameters returned by the PL/SQL from the database

Revision 8 33

Chapter 5

oraparse

oraparse statement-handle statement-text
Send the SQL statement statement-text to the Oracle server for decomposition. The statement-text can be

either a SQL or anonymous PL/SQL statement. There are a great many Oracle API calls made by this command
especially for SELECT sql commands. The statement-text may contain bind variable placeholders that begin
with a colon ':' character that orabind will use later for value substitution.

Examples:

oraparse $sh {select sysdate from dual}
oraparse $sh {delete from scott.emp where ename = ‘WELLS’}
oraparse $sh {delete from scott.emp where ename = :ename}
oraparse $sh {declare time number; begin :time := dbms_utility.get_time; end;}

Error conditions:

The statement-handle must be a valid handle previously opened with oraopen.

Return codes:

The oraparse command returns the numeric return code for OCI_SUCCESS a 0 on successful parsing of the
statement-text, and the error code returned by the Oracle API when parsing fails. Oraparse raises a Tcl error if
the statement-handle specified is not open, or if the statement-text is syntactically incorrect.

Behind the Scenes: What does oraparse do?

The Oracle API calls used by this function are:

OCIStmtPrepare();
OCIAttrGet(…, OCI_ATTR_STMT_TYPE,);
if (SELECT) then
 OCIStmtExecute(…,OCI_DESCRIBE_ONLY);
 if (ERROR) then
 OCIAttrGet(…, OCI_ATTR_PARSE_ERROR_OFFSET, …);
 OCIAttrGet(…, OCI_ATTR_SQLFNCODE, …);
 OCIAttrGet(…, OCI_ATTR_PARAM_COUNT, …);
 foreach parameter loop
 OCIParamGet();
 OCIAttrGet(… , OCI_ATTR_NAME, …);
 OCIAttrGet(…, OCI_ATTR_DATA_SIZE, …);
 OCIAttrGet(…, OCI_ATTR_DATA_TYPE, …);
 OCIAttrGet(…, OCI_ATTR_PRECISION, …);
 OCIAttrGet(…, OCI_ATTR_IS_NULL, …);
 if (NAMED TYPE) then
 OCIAttrGet(…, OCI_ATTR_TYPE_NAME, …);
 end loop;
end if (SELECT)

Revision 8 34

Chapter 5

orabind

orabind statement-handle ?:varname value ...?
The orabind command is used to link Tcl strings to SQL variables in a previously parsed SQL statement.

This is done for efficiency so that Oracle can parse the SQL statement once and then use it multiple times to
perform similar actions. Orabind may be executed repeatedly on a previously parsed statement. Binding should
only be done in conjunction with sql types (1-4, 16) select, insert, update, delete, merge and with the PL/SQL
types (8-9) begin and declare statements. Optional :varname value pairs allow substitutions on SQL bind
variables. There should be the same number of :varname value pairs as there are defined in the previously
parsed SQL statement.

Example:

set sql {insert into scott.emp(empno, ename) values(:empno, :ename)}
oraparse $cur $sql
orabind $cur :empno 1234 :name {Todd Helfter}
oraexec $cur

Error conditions:

• The statement-handle must have been opened with oraopen.
• An SQL or PL/SQL statement must have been previously parsed by the oraparse command using the

same statement-handle.
• The binding placeholders must be prefixed by a colon ":".
• It is not an error to call orabind without any :varname value pairs, but no binding will occur.

Orabind return codes:

• 0 All bindings are successful.
• 1003 Binding placeholders do not match the parsed SQL or the SQL statement has not been parsed.
• 1008 Not all SQL bind variables have been specified.
• Refer to Oracle error numbers and messages for other possible values.

Using SQL bind variables is more efficient than letting Oracle reparse SQL statements. Use a combination of
oraparse / orabind / oraexec for maximum efficiency:

set sql {insert into scott.emp(empno, ename) values(:empno, :ename)}
oraparse $cur $sql
foreach numb [list 1235 1236 1237 1238] name [list Ted Alice John Sue] {

Revision 8 35

Chapter 5

 orabind $cur :empno $numb :ename $name
 oraexec $cur
}
2447 microseconds per iteration

Is faster and incurs less load on the database than:

foreach numb [list 1235 1236 1237 1238] name [list Ted Alice John Sue] {
 set sql "insert into scott.emp(empno, ename) values ($numb, '$name')"
 oraparse $cur $sql
 oraexec $cur
}
3475 microseconds per iteration

Behind the Scenes: What does orabind do?

The Oracle API calls used by this function are performed for each bind field:

if (string data) then
 if (unicode) then
 OCIBindByName();
 OCIAttrSet(…, OCI_ATTR_CHARSET_ID,);
 OCIAttrSet(…, OCI_ATTR_MAXDATA_SIZE,);
 else
 OCIBindByName();
 if (arraydml) then
 OCIBindDynamic)
 endif
else
 if (refcursor data) then
 OCIBindByName(…, SQLT_RSET, …);
 endif
endif

AUTHORS NOTE: In my own applications, I always use bind variables for every SQL statement, even those
that are executed only once. Here are some reasons why:

• orabind removes the burden of escaping the single quote characters in your character data.
• orabind reduces the number of SQL statements in the Oracle parse cache keeping other statements in

the cache from being swapped out.
• orabind provides the database and the DBA a single SQL statement for purposes of tuning and

execution path analysis

oraexec

oraexec statement-handle ?-commit?

Revision 8 36

Chapter 5

Execute a previously parsed and optionally bound SQL statement. Statement-handle must be a valid handle
previously opened with oraopen. An SQL statement must have previously been parsed by the oraparse
command. Orabind and oraexec commands may be repeatedly issued after a statement is parsed.

The optional -commit argument specifies that the SQL will be committed upon successful execution.

orafetch

orafetch statement-handle ?options ...?
The orafetch command is used to retrieve data from the database as specified by a prior sequence of

oraparse, orabind and oraxec commands. As previously mentioned, Tcl has only one data type, a string, so all
returned values are converted to character strings except for ref_cursors which will be represented in a
datavariable list as a null string. The orafetch commands returns the result from the OCIStmtExecute() OCI
function. Likely values include 0 for success, 1404 for no more data, and -3123 for asyncronous still executing.

The following options can also be specified.

• -datavariable Specifies the variable to be set with a list containing the row of data fetched. The list
returned in the datavariable by orafetch contains the values of the selected columns in the order specified
by select.

• -dataarray Specifies the array in which the individual columns of data fetched will be set.

• -indexbyname When combinded with the -dataarray option, orafetch will use the column names from
the query as the index (hash) values of the array.

• -indexbynumber When combinded with the -dataarray option, orafetch will use the column positon
number from the query as the index (hash) values of the array.

• -command Specifies a script to eval when orafetch retrieves a row of data. This script may reference the
variable and array specified by other options.

Orafetch raises a Tcl error if the statement-handle specified is not open, or if an unknown option is specified.

Revision 8 37

Chapter 5

Altering Oratcl’s default behavior
oraconfig

oraconfig statement-handle
oraconfig statement-handle ?option-name?
oraconfig statement-handle ?option-name ?option-value?

The oraconfig command is used to get or set various behaviors of Oratcl at the statement-handle level. If no
arguments are provided as shown in the first sample syntax, the oraconfig command creates a return value
composed of a list of all option-name and option-value pairs. If only an option-name is specified such as in the
second syntax line above, the associated option-value will be returned. When both option-name and option-
value are provided, oraconfig will set the option-name to the provided option-value.

Before explaining each of these options individually, here are all the options and a brief description.

Option Description

bindsize The size of the reusable buffer created for each bind column by orabind, orabindexec and
oraplexec for storing bind variable values. The default is 4000 bytes and the maximum is
214744647 bytes.

datesize Sets or returns the amount of data (in characters) used to represent a date column. Datesize defaults
to 75 characters and the maximum is 7500 characters.

fetchrow
s

Configure the number of rows fetched and cached by orafetch. The orafetch command will bulk
fetch ‘fetchrows’ rows from the Oracle server with a single network round iteration. Fetchrows
defaults to 10 rows and the maximum is dependent upon available memory.

lobpsize The amount of data (in characters) used in piecewise reads and writes to LOB types with the oralob
command. The default is 10,000 characters and the maximum is 214744647 characters

longpsiz
e

Sets or returns the amount of data (in characters) used in piecewise reads and writes to LONG types
in the oralong command. Longpsize defaults to 50,000 characters and the maximum is 2,147,4.4,648
characters.

longsize The maximum amount of LONG or LONG RAW data returned by orafetch for each column of that
type. The default is 40960 bytes and the maximum is 214744647 bytes.

nullvalue Manage the NULL value substitution behavior. A value of "default" causes orafetch to substitute
zeros for NULLs in numeric columns and null strings "{}" for NULLs in character columns. Any
other value causes that value to be returned as a string for all NULLs. The default is "default".

numbsiz
e

Sets or returns the amount of data (in characters) used to represent a number column. Numbsize
defaults to 40 characters and the maximum is 4000 characters.

utfmode Sets or returns the UTF translation behavior. Setting this value to true causes orasql, orabindexec,
oraplexec, orafetch, oralong and oralob to perform UTF translation on values written to and read

Revision 8 38

Chapter 6

from the database with the system encoding. It is not recommended that this function be enabled
when reading or writing long raw type values with oralong. The default is false.

Error conditions. For numeric values, a value less than or equal to zero or greater than the stated maximum will
cause Oratcl to raise a TCL error.

• Setting the fetchrows to larger numbers for queries that return many rows may dramatically decrease the
time spent fetching the rows. Changes to fetchrows only affects subsequent oratcl commands.

Revision 8 39

Chapter 6

Oracle DATE types
Querying Date Fields

Tcl handles all data as strings and lists. Oracle has very particular patterns to use with date literals in SQL.
On queries, date literals will be converted to Tcl strings using the date format in effect at the time of the query.
For insert and update statements, Tcl strings will be converted to date literals using the date format in effect at
the time. Of course in both cases, the user can override any default behaviors with the TO_CHAR and
TO_DATE Oracle functions. What follows are a series of examples that show what behaviors you can expect in
the handling of date colums.

Example 1: Default date format DD-MON-YY

oraparse $cur {select empno, hiredate from emp where deptno=10}
oraexec $cur
while {[orafetch $cur -datavariable row] == 0} { puts $row }

8000 16-DEC-07
7782 09-JUN-81
7839 17-NOV-81
7934 23-JAN-82

Example 2 : Change returned date format using ‘alter session’ SQL.

Use alter session to change returned date strings
oraparse $cur {alter session set nls_date_format='DD-MON-YYYY HH24:MI:SS’}
oraexec $cur
oraparse $cur {select empno, hiredate from emp where deptno=10}
oraexec $cur
while {[orafetch $cur -datavariable row] == 0} { puts $row }

8000 {16-DEC-2007 05:30:00}
7782 {09-JUN-1981 00:00:00}
7839 {17-NOV-1981 00:00:00}
7934 {23-JAN-1982 00:00:00}

Example 3: Change returned date format using the to_char function.

oraparse $cur { \
 select empno, to_char(hiredate,'DD-MON-YYYY HH24:MI:SS') from emp where deptno=10 \
}
oraexec $cur
while {[orafetch $cur -datavariable row] == 0} { puts $row }

Revision 8 40

Chapter 7

8000 {16-DEC-2007 05:30:00}
7782 {09-JUN-1981 00:00:00}
7839 {17-NOV-1981 00:00:00}
7934 {23-JAN-1982 00:00:00}

Example 4: Change returned date languages using ‘alter session’.

oraparse $cur {alter session set nls_date_format='Day : Month : YYYY HH:MI:SS am'}
oraexec $cur
oraparse $cur {alter session set nls_date_language='spanish'}
oraexec $cur
oraparse $cur {select empno, hiredate from emp where deptno=10}
oraexec $cur
while {[orafetch $cur -datavariable row] == 0} { puts $row }

8000 {Miercoles : Diciembre : 2007 08:15:00 AM}
7782 {Martes : Junio : 1981 12:00:00 AM}
7839 {Martes : Noviembre : 1981 12:00:00 AM}
7934 {Sabado : Enero : 1982 12:00:00 AM}

Inserting and Updating Date Fields

Example 5: Update a date field using the default database format.

oraparse $cur { \
 update scott.emp \
 set hiredate='17-DEC-07' \
 where empno = '8000'
}
oraexec $cur
oracommit $lda
oraparse $cur { \
 select empno, to_char(hiredate,'DD-MON-YYYY HH24:MI:SS') \
 from emp where empno=8000 \
}
oraexec $cur
while {[orafetch $cur -datavariable row] == 0} { puts $row }

8000 17-DEC-07

Example 6: Use alter session to change the date format.

oraparse $cur {alter session set nls_date_format='DD-MON-YYYY HH24:MI:SS'}
oraexec $cur
oraparse $cur { \
 update scott.emp \

Revision 8 41

Chapter 7

 set hiredate='18-DEC-07 08:00:00' \
 where empno = '8000'
}
oraexec $cur
oracommit $lda
oraparse $cur { \
 select empno, hiredate from emp where empno=8000 \
}
oraexec $cur
while {[orafetch $cur -datavariable row] == 0} { puts $row }

8000 {18-DEC-0007 08:00:00}

Example 7: Use Oracle to_date function to convert strings to dates.

oraparse $cur { \
 update scott.emp \
 set hiredate=to_date('19-DEC-2007 8:15:00', 'DD-MON-YYYY HH24:MI:SS') \
 where empno = '8000'
}
oraexec $cur
oracommit $lda
oraparse $cur { \
 select empno, to_char(hiredate,'DD-MON-YYYY HH24:MI:SS') \
 from emp where empno=8000 \
}
oraexec $cur
while {[orafetch $cur -datavariable row] == 0} { puts $row }

8000 {19-DEC-2007 08:15:00}

Revision 8 42

Chapter 7

PL/SQL stored procedures

Similar to Oratcl’s handling of DML and SELECT statements, Oratcl can also submit PL/SQL statements to
the database for execution. These statements must take the form of an ANONYMOUS PL/SQL statement. That
is, they must begin with either a DECLARE or a BEGIN and they also must have a trailing END; The trailing
semi colon is required. The handling of PL/SQL statements is performed with the same steps as a SELECT.
First the statement is parsed with oraparse. Then optional parameters are bound to the statement with orabind.
Finally the statement is executed with oraexec. Parameters substituted by the Oracle database are retrieved with
a single call to orafetch. A properly formatted PL/SQL procedure invocation would look like this.

set plsql {BEGIN my_procedure(); END;}
oraparse $stm $plsql
oraexec $stm
orafetch $stm –datavariable res

Since that is such a simple example, let me give one that is more complex. Again we will make use of the
EMP schema that Oracle provides. Using the following PL/SQL package we can perform a number of
operations on that package from TCL. The package has both a procedure and a function so that using both can
be demonstrated.

CREATE OR REPLACE PACKAGE oratcl_emp_8 AS
 procedure get_name (p_empno in emp.empno%type, p_ename out emp.ename%type);
 function max_sal return emp.sal%type;

END;

CREATE OR REPLACE PACKAGE BODY oratcl_emp_8 AS

 procedure get_name (p_empno in emp.empno%type, p_ename out emp.ename%type) is
 begin
 select ename into p_ename from emp
 where emp.empno = p_empno;
 end;

 function max_sal return emp.sal%type is
 res number;
 begin
 select max(sal) into res from emp;
 return res;
 end max_sal;

END;

In the very first example, my_procedure() has no parameters, so a call to orabind is not required. However
the oratcl_emp_8 package does have parameters for the procedure and a return value from the function. The
PL/SQL stored procedures may use IN, OUT and/or IN OUT parameters.

Revision 8 43

Chapter 8

So first, let’s use the get_name procedure of the oratcl_emp_8 PL/SQL package. It has two parameters, the
empno (an IN parameter) and ename (an OUT parameter).

#
example8_1.tcl
#
package require Oratcl

set lda [oralogon scott/tiger]
set cur1 [oraopen $lda]

oraparse $cur1 {begin oratcl_emp_8.get_name(:empno, :ename); end;}
orabind $cur1 :empno 8000 :ename {}
oraexec $cur1
while {[orafetch $cur1 -datavariable row] == 0} {
 puts $row
 puts "Name = [lindex $row 1]"
}

oraclose $cur1
oralogoff $lda

[thelfter@dl320 chapter8]$ tclsh example8_1.tcl
8000 HELFTER
Name = HELFTER

As mentioned previously, orafetch with the –datavariable option is used to obtain the parameter values
returned by the Oracle database. The parameters are returned as a TCL list, in exactly the same order that they
are bound with the orabind command. Thus changing the above example to:

#
example8_2.tcl
#
package require Oratcl

set lda [oralogon scott/tiger]
set cur1 [oraopen $lda]

oraparse $cur1 {begin oratcl_emp_8.get_name(:empno, :ename); end;}
orabind $cur1 :ename {} :empno 8000
oraexec $cur1
while {[orafetch $cur1 -datavariable row] == 0} {
 puts $row
 puts "Name = [lindex $row 1]"
}

oraclose $cur1
oralogoff $lda

Revision 8 44

Chapter 8

Is still accurate, but changes the return parameter list to something that is very likely to be different from the
programmer’s intention.

[thelfter@dl320 chapter8]$ tclsh example8_2.tcl
HELFTER 8000
Name = 8000

It is the responsibility of the application programmer, to pull the parameter values back out of the TCL
list at the proper list index. Remember that TCL list indexes begin with position 0.

Once a statement handle has been parsed, that handle can be reused multiple times. In the following
example, oraparse is invoked only once, but orabind, oraexec, and orafetch may be re-issued with the same or
different values for as long as the statement handle is not reparsed or closed.

#
example8_3.tcl
#
package require Oratcl

set lda [oralogon scott/tiger]
set cur1 [oraopen $lda]

oraparse $cur1 {begin oratcl_emp_8.get_name(:empno, :ename); end;}

orabind $cur1 :empno 8000 :ename {}
oraexec $cur1
while {[orafetch $cur1 -datavariable row] == 0} {
 puts "Name = [lindex $row 1]"
}

orabind $cur1 :empno 7369 :ename {}
oraexec $cur1
while {[orafetch $cur1 -datavariable row] == 0} {
 puts "Name = [lindex $row 1]"
}

orabind $cur1 :empno 7499 :ename {}
oraexec $cur1
while {[orafetch $cur1 -datavariable row] == 0} {
 puts "Name = [lindex $row 1]"
}

oraclose $cur1
oralogoff $lda

[thelfter@dl320 chapter8]$ tclsh example8_3.tcl
Name = HELFTER
Name = SMITH

Revision 8 45

Chapter 8

Name = ALLEN:
‘

For PL/SQL functions, the code is much the same. In fact, only the PL/SQL statement itself takes a slightly
different form to take into account the return value.

#
example8_4.tcl
#
package require Oratcl

set lda [oralogon scott/tiger]
set cur1 [oraopen $lda]

oraparse $cur1 {begin :sal := oratcl_emp_8.max_sal(); end;}
orabind $cur1 :sal {}
oraexec $cur1
while {[orafetch $cur1 -datavariable row] == 0} {
 puts $row
 puts "sal = [lindex $row 0]"
}

oraclose $cur1
oralogoff $lda

[thelfter@dl320 chapter8]$ tclsh example8_4.tcl
5000
sal = 5000

Revision 8 46

Chapter 8

PL/SQL REF CURSOR variables
A REF CURSOSR is a data type in the PL/SQL language. It is a representation of a result set., as opposed

to a static value. In Oratcl, a REF CURSOR variable may be bound to a statement handle and the orafetch
command can be used to obtain the results. Sounds complicated, but it is really quite easy. Let’s start with an
example.

First we need a little PL/SQL package (I prefer packages, but a procedure or function would work as well).

CREATE OR REPLACE PACKAGE oratcl_emp_9 AS
 TYPE CurType IS REF CURSOR RETURN emp%ROWTYPE;
 PROCEDURE select_emp (ref_cur OUT CurType);
END;

CREATE OR REPLACE PACKAGE BODY oratcl_emp_9 AS
 PROCEDURE select_emp (ref_cur OUT CurType) IS
 BEGIN
 OPEN ref_cur FOR SELECT * FROM emp;
 END select_emp;
END;

And a sample Oratcl script to use the package.

package require Oratcl

set lda [oralogon scott/tiger]
set cur1 [oraopen $lda]
set cur2 [oraopen $lda]

oraparse $cur1 {begin oratcl_emp_9.select_emp(:res); end;}
orabind $cur1 :res $cur2
oraexec $cur1
while {[orafetch $cur2 -datavariable row] == 0} {
 puts $row
}

oraclose $cur1
oraclose $cur2
oralogoff $lda

Note that two statement handles are required to make use of REF CURSOR variables. One for Oratcl to
parse and execute the PL/SQL command, and another for Oratcl to fetch the REF CURSOR result sets. For this
to work, the 2nd statement handle has to be bound to the pl/sql parameter with orabind. Both statement handles
may be re-used for other operations.

[thelfter@dl320 chapter9]$ tclsh example9_1.tcl
8000 HELFTER VP 7439 19-DEC-07 5000 0 10
7369 SMITH CLERK 7902 17-DEC-80 800 0 20

Chapter 9

7499 ALLEN SALESMAN 7698 20-FEB-81 1600 300 30
7521 WARD SALESMAN 7698 22-FEB-81 1250 500 30
7566 JONES MANAGER 7839 02-APR-81 2975 0 20
7654 MARTIN SALESMAN 7698 28-SEP-81 1250 1400 30
7698 BLAKE MANAGER 7839 01-MAY-81 2850 0 30
7782 CLARK MANAGER 7839 09-JUN-81 2450 0 10
7788 SCOTT ANALYST 7566 19-APR-87 3000 0 20
7839 KING PRESIDENT 0 17-NOV-81 5000 0 10
7844 TURNER SALESMAN 7698 08-SEP-81 1500 0 30
7876 ADAMS CLERK 7788 23-MAY-87 1100 0 20
7900 JAMES CLERK 7698 03-DEC-81 950 0 30
7902 FORD ANALYST 7566 03-DEC-81 3000 0 20
7934 MILLER CLERK 7782 23-JAN-82 1300 0 10

Utilizing REF CURSOR PL/SQL variables, it is possible for the code developer to place all of the
DML and select statements used in an application in one or more PL/SQL packages. This method keeps
control of the data and return values at the database level and allows the end user application to remain
highly generic.

Using the oracols command on the REF CURSOR result after execution, it is possible to obtain the
name, type and precision of each of the columns in the result set.

package require Oratcl

set lda [oralogon scott/tiger]
set cur1 [oraopen $lda]
set cur2 [oraopen $lda]

oraparse $cur1 {begin oratcl_emp_9.select_emp(:res); end;}
orabind $cur1 :res $cur2
oraexec $cur1
foreach col [oracols $cur2 all] {
 puts $col
}

oraclose $cur1
oraclose $cur2
oralogoff $lda

You will find out in the next chapter that oracols returns a list of lists. One element of the list
represents each column, and that element contains the column name, size, type, precision, scale and nullok
(if the column is defined as not null, then nullok is 0 otherwise it is 1).

[thelfter@dl320 chapter9]$ tclsh example9_2.tcl
EMPNO 22 NUMBER 4 0 0
ENAME 10 VARCHAR2 {} {} 1
JOB 9 VARCHAR2 {} {} 1

Chapter 9

MGR 22 NUMBER 4 0 1
HIREDATE 7 DATE {} {} 1
SAL 22 NUMBER 7 2 1
COMM 22 NUMBER 7 2 1
DEPTNO 22 NUMBER 2 0 1

Chapter 9

Oracle Error Handling and Introspection
Oratcl provides several commands that allow you to obtaining meta-data information from the Oracle

database. These commands include the ability to display error information, desc tables, views and synonyms,
describe column data for currently executing SQL and to obtain a list of logon handles and statement handles.
First among these is error handling

oramsg

oramsg statement-handle ?option?

The oramsg command is used to obtain status and error information from the Oracle database.

oramsg statement-handle rows
The first and most common use case for the oramsg command is to obtain the row count during a fetch

operation. From a programmer’s perspective, it can be very important to know what the current row number is.
The rows option will return the number of rows affected by an INSERT, UPDATE, or DELETE statement as
well.

#
example10_1.tcl
#
package require Oratcl

set lda [oralogon scott/tiger]
set cur1 [oraopen $lda]

oraparse $cur1 {select ename from emp}
oraexec $cur1
while {[orafetch $cur1 -datavariable ename] == 0} {
 puts "row([oramsg $cur1 rows]) = $ename"
}

oraclose $cur1
oralogoff $lda

[thelfter@dl320 chapter10]$ tclsh8.6 example10_1.tcl
row(1) = HELFTER
row(2) = SMITH
row(3) = ALLEN
row(4) = WARD
row(5) = JONES
row(6) = MARTIN
row(7) = BLAKE
row(8) = CLARK
row(9) = SCOTT

Revision 8 50

Chapter 10

row(10) = KING
row(11) = TURNER
row(12) = ADAMS
row(13) = JAMES
row(14) = FORD
row(15) = MILLER

In the earlier versions of Oratcl, (version 2.X and 3.X), the row number result was stored in an oramsg
global hash (array). This was changed in Oratcl 4.X to a command based on a statement handle so that Oratcl
could function in conjunction with the thread package to create multithreaded applications.

oramsg statement-handle sqltype
The next use for the oramsg command, is to provide the type of SQL statement being executed. Oracle’s

OCI library classifies each SQL statement type with a type code. The sqltype parameter causes oramsg to
return the code set by the last SQL or PL/SQL to be parsed with oraparse. Valid values are:

1 SELECT corresponds to OCI_STMT_SELECT
2 UPDATE corresponds to OCI_STMT_UPDATE
3 DELETE corresponds to OCI_STMT_DELETE
4 INSERT corresponds to OCI_STMT_INSERT
5 CREATE corresponds to OCI_STMT_CREATE
6 DROP corresponds to OCI_STMT_DROP
7 ALTER corresponds to OCI_STMT_ALTER
8 BEGIN corresponds to OCI_STMT_BEGIN
9 DECLARE corresponds to OCI_STMT_DECLARE
16 MERGE corresponds to OCI_STMT_MERGE

Here is an example program, demonstrating the use of the sqltype parameter.

#
example10_2.tcl
#
package require Oratcl

proc get_sqltype {sqltype} {
 switch $sqltype {
 1 { return SELECT }
 2 { return UPDATE }
 3 { return DELETE }
 4 { return INSERT }
 5 { return CREATE }
 6 { return DROP }
 7 { return ALTER }

Revision 8 51

Chapter 10

 8 { return BEGIN }
 9 { return DECLARE }
 16 { return MERGE }
 }
}

set lda [oralogon scott/tiger]
set cur1 [oraopen $lda]

set sql {select ename from emp}
oraparse $cur1 $sql
set sqltype [oramsg $cur1 sqltype]
puts "$sqltype [get_sqltype $sqltype] is \"$sql\""

set sql {drop table emp}
oraparse $cur1 $sql
set sqltype [oramsg $cur1 sqltype]
puts "$sqltype [get_sqltype $sqltype] is \"$sql\""

oraclose $cur1
oralogoff $lda

[thelfter@dl320 chapter10]$ tclsh8.6 example10_2.tcl
1 SELECT is "select ename from emp"
6 DROP is "drop table emp

oramsg statement-handle rc
oramsg statement-handle error
oramsg statement-handle peo

There are three parameters to the oramsg command that are designed to be used in combination. These are
rc, error, and peo. The rc parameter, or return code, causes oramsg to return the rc value from the last executed
command. The rc value comes from the Oracle database. The error, or error string, returns the corresponding
full error text from the database. And the peo, or parse error offset, returns the position in the error string where
the error occurs.

#
example10_3.tcl
#
package require Oratcl

set lda [oralogon scott/tiger]
set cur1 [oraopen $lda]

set sql {select a,b,c from emp}
catch {oraparse $cur1 $sql}
puts "rc = [oramsg $cur1 rc]"
puts "error = [oramsg $cur1 error]"
puts "peo = [oramsg $cur1 peo]"

Revision 8 52

Chapter 10

puts {}
puts $sql
puts [string repeat { } [oramsg $cur1 peo]]^

oraclose $cur1
oralogoff $lda

[thelfter@dl320 chapter10]$ tclsh8.6 example10_3.tcl
rc = 904
error = {ORA-00904: "C": invalid identifier}
peo = 11

select a,b,c from emp
 ^

There are many values that Oracle may return as a return code that do not have an error text associated with
them. That is because these are return codes that are not errors, but status codes. Some examples are:

0 Function completed normally
144 Fetch results exhausted. End of data in orafetch command

1406 Fetched column was truncated.

-3123 Asynchronous command still processing

I will cover the use of the asynchronous return code more completely in a chapter devoted to that topic.

oramsg statement-handle ocicode
The oramsg parameter ocicode, is used to obtain the OCI_ATTR_SQLFNCODE attribute from a statement

handle after it is executed. Before the statement handle is executed with oraexec, this value has no meaning.
I’ve never actually used this function for anything. I’m not even sure why I implemented it. Time to check the
Oracle OCI documentation for it’s real purpose. Oh yeah, it is an even more fine grained description of the SQL
statement. A careful review of the code shows that this functionality is completely broken. This is now fixed in
version 4.5 and back ported in CVS to version 4.4

There are almost 200 possible return values for this attribute. I recommend the Oracle documentation for a
complete list:

http://download.oracle.com/docs/cd/B19306_01/appdev.102/b14250/ociaahan.htm#sthref6013

#
example10_4.tcl
#

Revision 8 53

Chapter 10

http://download.oracle.com/docs/cd/B19306_01/appdev.102/b14250/ociaahan.htm#sthref6013

package require Oratcl

proc get_sqlfncode {fncode} {
 switch $fncode {
 4 { return SELECT }
 9 { return DELETE }
 52 { return {ALTER SESSION} }
 }
}

set lda [oralogon scott/tiger]
set cur1 [oraopen $lda]

set sql {select ename from emp}
oraparse $cur1 $sql
oraexec $cur1
set ocicode [oramsg $cur1 ocicode]
puts "$ocicode [get_sqlfncode $ocicode] is \"$sql\""

set sql {alter session set NLS_DATE_FORMAT='YYYY-MON-DD HH24:MI:SS'}
oraparse $cur1 $sql
oraexec $cur1
set ocicode [oramsg $cur1 ocicode]
puts "$ocicode [get_sqlfncode $ocicode] is \"$sql\""

set sql {delete from emp where empno=9999}
oraparse $cur1 $sql
oraexec $cur1
set ocicode [oramsg $cur1 ocicode]
puts "$ocicode [get_sqlfncode $ocicode] is \"$sql\""

oraclose $cur1
oralogoff $lda

[thelfter@dl320 chapter10]$ tclsh8.6 example10_4.tcl
4 SELECT is "select ename from emp"
52 ALTER SESSION is "alter session set NLS_DATE_FORMAT='YYYY-MON-DD
HH24:MI:SS'"
9 DELETE is "delete from emp where empno=9999"

oramsg statement-handle arraydml
A recent addition to Oratcl in version 4.5 is the ability to perform bulk inserts and updates. This feature

called arrraydml has an associated oramsg parameter to assist with the status and error handling of arraydml
commands.

oramsg statement-handle all

Revision 8 54

Chapter 10

Invoking oramsg with the all parameter has oramsg return all values as a list of values in the following
order: rc, error, rows, peo, ocicode, sqltype, arraydml. With this feature, a programmer can call oramsg once
and use lindex to pull out the particular values of interest. This can be more efficient than invoking oramsg
multiple times (see example10_3.tcl). The time saving is marginal in either case.

Oramsg raises a TCL error if the statement-handle is invalid.

[thelfter@dl320 chapter10]$ tclsh8.6
% package require Oratcl
% oramsg oratc0.0 rc
oramsg: handle oratc0.0 not valid

oradesc

oradesc logon-handle table-name

Describes the columns of table-name. Returns a list containing lists in the format {name size type precision
scale nullok} for each column of the table. Oradesc will also describe the columns of a table refer enced by a
private or public synonym when given the name of a synonym as the table-name argument. Oradesc will
describe an object in the connecting schema before describing a public synonym when the names are the
same.

Oradesc returns a Tcl list of lists. I.E. Each column in the table makes up a list element with five members.

• name Column name

• size Column size

• type Column type

• precision Column precision

• scaleColumn

• nullok Column NULL allowed (1 if NULL allowed, 0 if not allowed)

For example, lets compare Sql*Plus with Oratcl on the SCOTT.DEPT table. Sql*Plus would desc the table
as follows.

SQL> desc dept
 Name Null? Type
 --- -------- -------------------------
 DEPTNO NOT NULL NUMBER(2)
 DNAME VARCHAR2(14)

Revision 8 55

Chapter 10

 LOC VARCHAR2(13)

Oratcl describes the table in a more programmatic way.

%set lh [oralogon scott/tiger]
oratcll0
%oradesc $lh dept
{DEPTNO 22 NUMBER 2 0 0} {DNAME 14 VARCHAR2 0 0 1} {LOC 13 VARCHAR2 0 0 1}

It is extremely useful to know what columns make up a table and if NULL values are allowed. Perhaps a
more human readable way to look at this information combined with an example showing how to use it would
be welcome.

oraldalist

oraldalist

Return a list of all opened logon-handles.

orastmlist logon-handle

Return a list of all opened statement-handles associated with the logon-handle.

orainfo option ?args?

Retrieves information about oratcl. The option may be one of "version", "server", or "logonhandle".

"orainfo version" returns the current oratcl version.

"orainfo server" requires a valid logon-handle previously opened with oralogon as an argument and
returns the oracle server information.

 "orainfo status" requires a valid logon-handle previously opened with oralogon as an argument and
returns the oracle server connection status (1 connected, 0 not connected).

 "orainfo logonhandle" requires a statement-handle previously opened with oraopen and returns the login-
handle that the statement handle was opened under.

EXAMPLES

puts [orainfo version]

set lda [oralogon username/password@db]

Revision 8 56

Chapter 10

puts [orainfo server $lda]

set sth [oraopen $lda]

set mylda [orainfo loginhandle $sth]

oracols

oracols statement-handle ?option?
Return the names of the columns from the last orasql, orafetch, or oraplexec command as a Tcl list.

The oracols may be used after oraplexec, in which case the bound variable names are returned. The option
parameter can be used to alter the result as follows:

• all returns all values as a list of lists in the format {{name size type precision scale nullok}
{...}}

• name returns a list of column names. This is the default.

• size returns a list of column sizes.

• type returns a list of column types.

• precision returns a list of column precisions.

• scale returns a list of column scales.

• nullok returns a list of column "NULLOK" values. "NULLOK" will be 1 if the column may
be NULL, or 0 otherwise.

The oracols command raises a Tcl error if the statement-handle specified is not open. The oracols
command raises a Tcl error if the option is not valid.

Revision 8 57

Chapter 10

Oracle LONG and LONG RAW types
 The maximum amount of LONG or LONG RAW data returned by orafetch is ultimately dependent on
Oratcl's ability to malloc() maxlong bytes of memory for each LONG/LONG RAW column retrieved.
configuring maxlong to too high a value may cause core dumps or memory shortages.

oralong sub-command handle ?options ...?
Perform operations on Oracle LONG column-types.

Handle must be either a valid statement–handle previously opened with oraopen or a LONG handle
created with the alloc sub-command. Both LONG and LONG RAW columns are supported by the oralong
command.

The following sub-commands are available:

oralong alloc statement-handle -table $table -column $column -rowid $rowid
Create and return a LONG handle that refers to the LONG specified by ($table, $column, $rowid).

statement-handle must be a statement handle previously created with oraopen and will be used implicitly by the
other oralong sub-commands that operate on this LONG.

oralong free LONG-handle
Destroy the LONG handle and free any resources associated with it.

oralong read LONG-handle -datavar varname
Read the LONG specified by LONG-handle into the variable identified by varname.

oralong write LONG-handle -datavar varname
Write the data in the variable identified by varname into the LONG specified by LONG-handle.

LONG Example

Assume that $sth is a valid statement-handle
opened earlier with logon handle $lda
set chr_data [string repeat 0123456789---------- 10000]
Find the ROWID for the LONG handle
oraparse $sth {select rowid from oratcl_long \

where field = 'value'}
oraexec $sth
orafetch $sth -datavariable rowid
set longid [oralong alloc $sth -table oratcl_long \

-column mp3 -rowid $rowid]
oralong write $longid -datavar chr_data
oracommit $lda
oralong read $longid -datavar out_data
oralong free $longid

if {[string equal $chr_data $out_data]} {
puts "write/read results are equal"

}

Revision 8 58

Chapter 11

Revision 8 59

Chapter 11

Operations with BLOB and CLOB data types.

oralob

Perform operations on Oracle Long Objects (LOBs).

oralob sub-command handle ?options …?

Handle must be either a valid statement-handle previously opened with oraopen or a LOB handle created
with the alloc sub-command. Both Binary Long Object (BLOB) and Character Long Object (CLOB) columns
are supported by the oralob command.

 The following sub-commands are available:

oralob alloc statement-handle -table $table -column $column -rowid $rowid
 Create and return a LOB handle that refers to the LOB specified by ($table, $column, $rowid). statement-
handle must be a statement-handle previously created with oraopen and will be used implicitly by the other
oralob sub-commands that operate on this LOB.

oralob free LOB-handle
Destroy the LOB handle and free any resources associated with it.

oralob read LOB-handle -datavar varname
Read the LOB specified by LOB-handle into the variable identified by varname.

oralob substr LOB-handle -start $start -stop $stop -datavar
Reads character from the LOB specified by LOB-handle, beginning at $startpos and ending at $stoppos, into

varname. $startpos and $stoppos both default to 0.

oralob write LOB-handle -datavar varname
Write the data in the variable identified by varname into the LOB specified by LOB-handle.

 oralob writeappend LOB-handle -datavar varname
Append the data in the variable identified by varname to the end of the LOB specified by LOB-handle.

oralob append LOB-handle1 LOB-handle2
Appends the contents of the LOB specified by LOB-handle2 to the LOB specified by LOB-handle1.

Both LOBs must be of the same type (Binary or Character).

oralob erase LOB-handle -start $start -stop $stop

Revision 8 60

Chapter 12

Overwrites the data in the LOB specified by LOB-handle from $start to $stop with NULL characters. $start
and $stop both default to 0.

oralob trim LOB-handle -length $length
Trims the LOB specified by LOB-handle to $length characters or bytes.

oralob length LOB-handle
Returns the length (in characters or bytes) of the LOB specified by the LOB-handle.

oralob instr LOB-handle -pattern $pattern -start $start -nth $nth
Returns the position in the LOB specified by LOB-handle at which the $nth occurrence of the pattern

$pattern appears. The search is started at $start. $start defaults to 0 and $nth defaults to 1.

oralob compare LOB-handle1 LOB-handle2 -start1 $start1 -start2 $start2 -length $length
Compares the two LOBs specified by LOB-handle1 and LOB-handle2. The comparison is begun at the

position indicated by $start1 (in LOB 1) and $start2 (LOB 2) and continues for $length positions. A return value
of 0 indicates that the two LOBs are identical through the positions specified. A non-zero return value indicates
that the two LOBs differ.

The oralob commands are a collection of TCL and anonymous PL/SQL wrappers for the Oracle
dbms_lob PL/SQL package and therefore require the rowid (as well as the table name and column name) of the
LOB in order to operate. The rowid of a row may be determined easily, as shown in the example below.

LOB Example

Assume that $sth is a valid statement-handle
opened earlier
oraparse $sth "select rowid from my_table where my_key = 'keyvalue'"
oraexec $sth
orafetch $sth -datavariable rowid
set data "abcdeabcdeabcde"
set lobid [oralob alloc $sth -table "my_table" \

-column "clob_col" -rowid $rowid]
oralob write $lobid -datavar data
set l [oralob length $lobid]
$l == 15
set data ""
oralob read $lobid -datavar data
$data contains "abcdeabcdeabcde"
set i [oralob instr $lobid -pattern "eab" -start 3 -nth 2]
$i == 9 -- TCL-like indexing, not Oracle indexing

NOTE: The PL/SQL DBMS_LOB package used by the oralob command requires BLOB and CLOB fields to
be initialized before they may be operated upon. You may automatically initialize a LOB field by using
EMPTY_BLOB() or EMPTY_CLOB() in the DEFAULT clause of a table definition or initialize before use by
inserting an EMPTY_BLOB() or EMPTY_CLOB().

Table Definition Example:

Revision 8 61

Chapter 12

create table test_lob_1 (
lob_key varchar2(10) primary key,
lob_clob clob default empty_clob(),
lob_blob blob default empty_blob()

)

 Initialize Before Use Example:
 # Assume the following table definition:
 # create table test_lob_2 (
 # lob_key varchar2(10),
 # lob_clob clob,
 # lob_blob blob
 #)

set sql { \
insert into test_lob_2 \

(lob_key, lob_clob, lob_blob) \
values (:lob_key, empty_clob(), empty_blob())\

}
orasql $sth $sql -parseonly
Create a new row in test_lob_2 with lob_clob
and lob_blob properly initialized.
orabindexec $sth :lob_key "AAAAAAAAAA"

Revision 8 62

Chapter 12

Historic Shortcut Commands
As it was in the beginning. When I started using Oratcl in the mid 90’s There were fewer commands and a lot
less options available. Oratcl had once command for SQL and another for PL/Sql. The ability to parse SQL and
then use bind variables to execute a statement multiple times was not yet added to the package. I’m having a
hard time remembering exactly what version the –parseonly option was added to orasql and an orabindexec
command was added. Somewhere in the 2.6 to 2.7 time window.

Of course when Oracle introduced the completely revamped Oracle Call Interface, it was time to implement
Oratcl commands a little differently. But backwards compatibility was always in my mind while introducing
new features. In fact, the removal of the oramsg array and the changes to orafetch are truly the only non-
backwards compatible operations introduced up through Oratcl 4.5. These topics will be covered more
completely in the chapter on migrations.

The following commands are kept in the library to be backwards compatible. They are still usable, but have
been implemented at the ‘C’ level as calls to the Oratcl primitive functions oraparse, orabind and oraexec.

orasql

orasql statement-handle sql-statement ?-parseonly? ?-commit?
Execute the SQL statement sql-statement on the Oracle server. Statement-handle must be a valid handle

previously opened with oraopen. Orasql will return the numeric return code "0" on successful execution of the
sql-statement.

 The optional -parseonly argument causes orasql to parse but not execute the SQL statement. The SQL
statement may contain bind variables that begin with a colon (':'). The statement may then be executed with the
orabindexec command, allowing bind variables to be substituted with values. Bind variables should only be
used for SQL statements select, insert, update, or delete.

The optional -commit argument specifies the that SQL will be committed upon successful execution.

 Orasql raises a Tcl error if the statement-handle specified is not open, or if the SQL statement is syntactically
incorrect.

Table inserts made with orasql should follow conversion rules in the Oracle SQL Reference manual.

orabindexec

orabindexec statement-handle ?-commit? ?:varname value ...?
Execute a previously parsed SQL statement, optionally binding values to SQL variables. Statement-handle

must be a valid handle previously opened with oraopen. An SQL statement must have previously been parsed
by executing oraparse or orasql with the -parseonly option. Orabindexec may be repeatedly executed after a
statement is parsed with bind variables substituted on each execution. Orabindexec does not re-parse SQL
statements before execution.

Revision 8 63

Chapter 13

The optional -commit argument specifies the that SQL will commit upon successful execution.

Optional :varname value pairs allow substitutions on SQL bind variables before execution. As many
:varname value pairs should be specified as there are defined in the previously parsed SQL statement. Varnames
must be prefixed by a colon ":".

Orabindexec will return "0" when the SQL is executed successfully; "1003" if a previous SQL has not been
parsed with orasql; "1008" if not all SQL bind variables have been specified. Refer to Oracle error numbers and
messages for other possible values.

oraplexec

oraplexec statement-handle pl-block ?:varname value ...?
Execute an anonymous PL block, optionally binding values to PL/SQL variables. Statement-handle must be

a valid handle previously opened with oraopen. Pl-block may either be a complete PL/SQL procedure or a call
to a stored procedure coded as an anonymous PL/SQL block. Optional :varname value pairs may follow the pl-
block. Varnames must be prefixed by a colon ":", and match the subsitution bind names used in the procedure.
Any :varname that is not matched with a value is ignored. If a :varname is used for output, the value should be
coded as a null list, {}.

Ref-cursor variables may be returned from a PL/SQL block by specifying an open statement-handle as the
bind value for a :varname bind variable. The handle must have previously been opened by oraopen using the
same logon-handle as the cursor used to execute the oraplexec command. After oraplexec completes, the handle
may be used to fetch result rows by using orafetch; column information is available by using oracols.

Oraplexec will return "0" when executed successfully. Use the command orafetch to retrieve the bind
results.

Oraplexec raises a Tcl error if the cursor handle specified is not open, or if the PL/SQL block is in error.

Revision 8 64

Chapter 13

Slave Interpreters
Oratcl may be used in a Tcl slave interpreter. However, logon-handles and statement-handles are only

accessible from the interpreter in which they are created. The test suite provides examples of slave interpreter
interaction. A common use for this type of configuration is in graphical applications built with Tk. One does not
want the UI to stop responding during database layer interactions, so running the DB layer in a slave interpreter
is one way of creating GUI tools that remain responsive to their users.

interp create s
s eval set env(ORACLE_HOME) $env(ORACLE_HOME)
load {} Oratcl s
set s_ora_lda [s eval {oralogon scott/tiger@orcl11g}]
set s_ora_cur [s eval “oraopen $s_ora_lda”]

s eval “oraclose $s_ora_cur”
s eval “oralogoff $s_ora_lda”
interp delete s

Revision 8 65

Chapter 14

Array DML
 Beginning with the Oratcl 4.5 version of the package, it is now possible to bulk load data into the target
database. Thanks to a very useful patch submitted by Jeremy Collins (an Oratcl user) about four years ago that I
left molding in my inbox for way too long, we can now pass lists of values to Oracle insert/update DML
statements. Array DML is a bit of a misnomer, because we actually use Tcl lists not arrays, but the name sticks
because of its Oracle Call Interface connotations. In the OCI documentation, this feature is referred to as the
‘OCI Array Interface’

 I’ll delve into the actual syntax for this operation in a moment. But first I would say that this new feature could
be hugely important for those of you that use Oratcl to load data. In my testing with 1000 row inserts, I’ve found
that the array dml feature can insert those rows in about 5% of the time as a traditional loop {orabind … ;
oraexec …;} would take.

 The syntax is not hard, but it essential to start with balanced Tcl lists. I.E. a list for every column in the insert
of equal length. Oratcl will check and raise an error if passed lists of unequal length. It will also raise an error if
arraydml is attempted on any statement that is not an INSERT or UPDATE statement.

#!/opt/tcl8.6/bin/tclsh8.6
chapter 14
arrayins.tcl
package require Oratcl

set lda [oralogon tmh/tmh2]
set stm [oraopen $lda]
puts [time {
set sql { \
 insert into arraydml (v_number, v_char, v_varchar2) \
 values \
 (:vn, :vc, :v2) \
}
oraparse $stm $sql
set vnl [list 10 11 12 13 14 15 16 17 18 19]
set vcl [list aa bb cc dd ee ff gg hh ii jj]
set v2l [list AA BB CC DD EE FF GG HH II JJ]
orabind $stm -arraydml :vn $vnl :vc $vcl :v2 $v2l
oraexec $stm
oracommit $lda
}]
oraclose $stm
oralogoff $lda
exit

 The above code sample inserts 10 rows of data with a single set of calls to orabind and oraexec. This
results in fewer network round trips to the database server and a great increase in performance.

SQL> select * from arraydml;

Revision 8 66

Chapter 15

 V_NUMBER V_DATE V_ V_VARCHAR2
---------- --------- -- --------------------
 10 aa AA
 11 bb BB
 12 cc CC
 13 dd DD
 14 ee EE
 15 ff FF
 16 gg GG
 17 hh HH
 18 ii II
 19 jj JJ

10 rows selected.

 Similarly, one can update rows with the same commands:

#!/opt/tcl8.6/bin/tclsh8.6
package require Oratcl

set lda [oralogon tmh/tmh2]
set stm [oraopen $lda]
puts [time {
set sql { \
 insert into arraydml (v_number, v_char, v_varchar2) \
 values \
 (:vn, :vc, :v2) \
}
oraparse $stm $sql
set vnl [list 10 11 12 13 14 15 16 17 18 19]
set vcl [list aa bb cc dd ee ff gg hh ii jj]
set v2l [list AA BB CC DD EE FF GG HH II JJ]
orabind $stm -arraydml :vn $vnl :vc $vcl :v2 $v2l
oraexec $stm
oracommit $lda
}]
oraclose $stm
oralogoff $lda
exit

 This script will update the 10 rows created in the first sample program.

SQL> /

 V_NUMBER V_DATE V_ V_VARCHAR2
---------- --------- -- --------------------
 20 aa ZZ
 21 bb ZZ

Revision 8 67

Chapter 15

 22 cc ZZ
 23 dd ZZ
 24 ee ZZ
 25 ff ZZ
 26 gg ZZ
 27 hh ZZ
 28 ii ZZ
 29 jj ZZ

10 rows selected.

 This works because of the use of the OCIBindDynamic API. and the iters parameter. An important note
from Oracle is that ROW TRIGGERS are fired as each row is manipulated.

insert 10 rows update 10 rows insert 100000 rows update 10000 rows

arra
y

5769
microseconds

7056
microseconds

560806 microseconds 6202343 microseconds

loop 7100
microseconds

8832
microseconds

25526825
microseconds

275875794
microseconds

Also, I should check and see what happens if an attempt to use an existing statement handle and
parsed sql more than once (reuse) by calling orabind and oraxec multiple times on the same parsed
statement handle.

Revision 8 68

Chapter 15

Multithreading
 The Oratcl 4.* package may be used in combination with the Tcl thread extension to create multithreaded Tcl
applications. It was for this reason that the few backwards incompatibilities with Oratcl 3 had to be introduced.
One cannot have global result variables with multiple threads. The best known (to me) application created with
Tcl, Oratcl and Thread, is hammer ora. http://hammerora.sourceforge.net. This application is used by many to
benchmark Oracle databases.

Steve Shaw, author of hammerora writes the following :

“I know I have said this before, but Oratcl really is remarkable in that when I looked for the best language to
write a load test tool the main requirements were a scripted Oracle interface (thread safe) with a multi-threaded
capability and only TCL and Oratcl met this requirement and as far as I know still do. Another thing that is
impressive is the level of efficiency and scalability in a multithreaded environment, I run tests in a lab
environment when I can and I have 2 Itanium servers as load generators and I have compared the database
workload between running 1 and 2 load generators. So far without thinktime i have tested up to 48 threads
running as fast as possible and the database server always maxes out before the load generator. This is in
comparison to a presentation I saw at Oracle Openworld this year on performance where the presenter advised
against more than 10-15 threads in a java VM for testing.”

Before we get into the coding aspects, let’s make sure our environment is configured properly for threads. I
seriously recommend compiling this all from source code, especially if you are not sure of your runtime
environment.

Revision 8 69

Chapter 16

http://hammerora.sourceforge.net/

Asynchronous Transaction Processing

 set lda [oralogon scott/tiger -async]
 set sth [oraopen $lda]
 set sql {select empno, ename from emp where job = :job}

 #parse phase
 while {[oraparse $sth $sql] == $::oratcl::codes(OCI_STILL_EXECUTING)} {
 ...
 process other events
 ...
 }

 #bind phase
 orabind $sth :job ANALYST

 #execution phase
 while {[oraexec $sth] == $::oratcl::codes(OCI_STILL_EXECUTING)} {
 ...
 process other events
 ...
 }

 #fetch one row
 while {[orafetch $sth -datavar row] == $::oratcl::codes(OCI_STILL_EXECUTING)} {
 ...
 process other events
 ...
 }
 #while row found, process and fetch another row
 while {[oramsg $sth rc] == 0} {

 puts "row [oramsg $sth rows] == $row"

 while {[orafetch $sth -datavar row] == $::oratcl::codes(OCI_STILL_EXECUTING)} {
 ...
 process other events
 ...
 }
 }

Revision 8 70

Chapter 17

Linking Oratcl to ‘C’ programs
It’s a fairly common question, Can Oratcl be used directly from ‘C’ programs. The answer is yes, this can be
done quite easily. I’ve found the combination of Oratcl and ‘C’ is most useful in programs that require the fine
grain control that ‘C’ can provide, and the flexibility of a ‘script’ for the database interaction. There would not
be much point in creating an exclusively ‘C’ Oratcl program, one might as well use OCI and avoid the Tcl/Oratcl
overhead at that point. But for adding a DB interface to ‘C’ this works quite well. Here I will present a little
sample. This quick program will create an initialize a Tcl Interpreter, initialize the Oratcl library and execute the
specified Oratcl script file.

Because the test environment was linux, it was also necessary to set the LD_LIBRARY_PATH env. variable.
I’ve Tcl 8.5 installed in /opt/tcl8.5 and Oratcl 4.5 installed in /opt/tcl8.5/lib/Oratcl4.5. Additionally, the
ORACLE_HOME and perhaps the ORACLE_SID environment variables will also be required.

> export LD_LIBRARY_PATH=/opt/tcl8.5/lib:/opt/tcl8.5/lib/Oratcl4.5:$ORACLE_HOME/lib

This example contains three files, a sample Makefile, a short main.c and a script file test.tcl. When compiled,
the main.c is converted into a binary ‘test’. This binary will create a Tcl interpreter and execute the test.tcl script
file, which will, in turn, fetch the instance name from the database and print it.

Makefile
PROGRAM= test
OBJS= main.o

CC= gcc
CCOPTIONS= -O2 -Wall
LDOPTIONS= -L$(TOPDIR)/lib -L/opt/tcl8.5/lib -L/opt/tcl8.5/lib/Oratcl4.5

INCLUDES= -I/opt/tcl8.5/include
LIBS= -lOratcl4.5 -ltcl8.5

CFLAGS= $(CCOPTIONS) $(BDOPTIONS) $(OPTIONS) $(INCLUDES)
LDFLAGS= $(LDOPTIONS)

all: $(PROGRAM) $(PROGTCL)

$(PROGRAM): $(OBJS)
$(CC) $(CFLAGS) $(LDFLAGS) -o $(PROGRAM) $(OBJS) $(LIBS)

main.c
#include <tcl.h>

int
main(argc, argv)

Revision 8 71

Chapter 18

int argc;
char **argv;

{

char *fn="main";
Tcl_Interp *interp;
int i;

Tcl_FindExecutable(argv[0]);

 if ((interp = Tcl_CreateInterp()) == NULL) {
 return NULL
 }

 if (Tcl_Init(interp) != TCL_OK) {
 fprintf(stderr,
 "%s(): Tcl_Init: %s",
 fn,
 Tcl_GetStringResult(interp));
 return NULL;
 }

 if (Oratcl_Init(interp) != TCL_OK) {
 fprintf(stderr,
 "%s(): Oratcl_Init: %s",
 fn,
 Tcl_GetStringResult(interp));
 return NULL;
 }

i = Tcl_EvalFile(interp, "test.tcl");
if (i != TCL_OK) {

 fprintf(stderr,
 "%s(): Tcl_EvalFile: %s",
 fn,
 Tcl_GetStringResult(interp));
 return NULL;

}

return (0);
}

test.tcl
set lda [oralogon scott/tiger@orcl11g]
puts "logon-handle = $lda"
set cur [oraopen $lda]
puts "statement-handle = $cur"
oraparse $cur {select instance_name from v$instance}
oraexec $cur
while {[orafetch $cur -datavariable instance] == 0} {

puts "instance = $instance"
}
oraclose $cur

Revision 8 72

Chapter 18

oralogoff $lda

Scripts of any complexity can be added to ‘C’ programs in this way.

Case Study:
In a place I once worked, a large set of daemon tools was created, combining ‘C’ and Tcl, these tools used an
Oracle data store and interacted with the database using Oratcl. The daemons had all the power of ‘C’, the
ability to fork, setuid(), execute from a known directory, manipulate restricted TCP and UDP ports and other
various features associated with daemons.

The internals of the daemons were coded in Tcl scripts loaded by the daemon into an interpreter created for each
inbound user. The ‘C’ code kept a hash of the Tcl interpreters, one interpreter being assigned to each client.
This allowed the developers of the internal functionality the ability to write those functions in a high level
language. This configuration mdade code testing and deployment very efficient. This also kept security at a
maximum, each end user had in essence a virtual daemon, as each user session could in no way interact with the
others.

Revision 8 73

Chapter 18

Loading Oratcl from a starkit
One day while casually browsing through the comp.lang.tcl newsgroup, I came across the a question on how to
properly load Oratcl in a starkit, that will work everywhere the starkit is installed. What is a starkit, was my first
question. Time to hit the wiki: http://www.tcl.tk/starkits/.

A Starkit is a single file packaging of Tcl scripts, platform specific compiled code and application data;
designed to facilitate simple deployment of cross platform applications. The name comes from STandAlone
Runtime.

An additional twist to the issue, was that Oracle clients were only installed on some of the questioner’s systems
and in fact, he really couldn’t control where or even if Oracle is installed. Knowing that Oratcl requires an
Oracle client install of some kind in order to obtain the OCI libraries needed, my first thought was to combine
Oratcl with the base files from the Oracle instant client.

MS Windows starkit using Oratcl and the Oracle instant client.

In order to load Oratcl into a starkit, a non standard pkgIndex..tcl file must be authored. Here is a sample
pkgIndex.tcl file contributed by an Oratcl user.

package ifneeded Oratcl 4.4 [list OraLoad $dir]
proc OraLoad { dir } {
 global env
 foreach file [glob $dir/*.dll] {
 catch {
 file copy -force $file [file join $env(TEMP) [file tail $file]]
 }
 }
 catch {
 file copy -force $dir/msvcr70.dll \
 [file join [file dirname [info nameofexecutable]] msvcr70.dll]
 }
 append env(PATH) ";$env(TEMP);"
 load $env(TEMP)/oratcl44.dll
}

Inside of the Oratcl4.4 directory you should have these files which will generate a fully featured version and a
.exe file of about 30m.

File Source
oratcl44.dll Oratcl distribution
msvcr70.dll Microsoft Visual C runtime
oci.dll Oracle instant client
orannzsbb10.dll Oracle instant client

Revision 8 74

Chapter 19

http://www.tcl.tk/starkits/

oraociei10.dll Oracle instant client

It is possible to generate a lite version supporting only English, unicode and western characters. The .exe file
created is only 7M. To create the lite version, replace oraociei10.dll by oraociicus10.dll, which also may be
obtained from the Oracle instant client.

Revision 8 75

Chapter 19

Using Oratcl in CGI scripts
The other day, I received an email support request from an Oratcl user Don, who was having some trouble

getting his tclsh and expect scripts to load the Oratcl package. All code worked fine from the command line, but
the package loading mechanism was hanging when run under apache cgi. The following script was supplied as a
test case.

#!/usr/bin/tclsh
puts "content-type: text/html\n\n"
puts "asdf"
set auto_path [linsert $auto_path 0 /usr/local/lib/oracle] ;# libOratcl4.4.so
package require Oratcl
puts "asdf"

With this simple test case, a command line invocation produced a pair of ‘asdf’ outputs, while the apache
CGI produced only the first line, and then hung. The operating system was CentOS in a VMware instance.

Right off the bat, this felt to me like an environment issue. However, I’ve no experience whatsoever with
CGI scripting, but I do know what you must do to fire Oracle scripts from a cron job and this just felt similar.
After several iterations of suggestions involving environment variables, such as make sure ORACLE_HOME is
set, what does LD_LIBRARY_PATH include, and have these been set before the invocation of the tclsh script,
Don came back with the solution. I include it here for anyone else who might have this issue.

Success!

I added the following two lines to .htaccess

SetEnv LD_LIBRARY_PATH /usr/lib/oracle/10.2.0.3/client/lib
SetEnv ORACLE_HOME /usr/lib/oracle/10.2.0.3/client

Only the LD_LIBRARY_PATH was necessary, as the other one could be set after launch.

Thanks TONS for sticking with me on this and giving me your guidance.

Don

What Don is referring to, with “the other one could be set after launch” is that you can alter the
ORACLE_HOME environment variable in a Tcl script before running the package require command, but
setting the LD_LIBRARY_PATH variable (which tells the OS where to look for libraries) after a binary
program has already been started, in this case tclsh, is not effective

This works:
Revision 8 76

Chapter 20

http://10.2.0.3/client
http://10.2.0.3/client/lib
http://libOratcl4.4.so/

#!/usr/bin/tclsh
set ENV(ORACLE_HOME) /usr/lib/oracle/10.2.0.3/client
package require Oratcl

This does not, because the LD_LIBRARY_PATH must be set before the program (tclsh) executes.

#!/usr/bin/tclsh
set ENV(LD_LIBRARY_PATH) /usr/lib/oracle/10.2.0.3/client/lib
package require Oratcl

Revision 8 77

Chapter 20

Biography
Todd M. Helfter received the B.S. degree in computer science from Purdue University, West Lafayette,

Indiana in 1995. After several years as a student assistant with Purdue's IT department, he took a full time
position in that department in 1994. During the next ten years he improved, developed and deployed
applications and services related to computer account provisioning and identity and access management. He
assisted in several migrations from mainframe databases into the client/server architecture using AIX, Solaris
and Oracle 7, 8 and 9 and with the integration of the university's core systems with various products.

In 1996 Mr. Helfter became active in the open source movement specifically in the area of the Tcl/Tk
scripting language and in 1999 took over the role of primary developer for the Oratcl open source project which
provides the glue between Tcl and Oracle. In the intervening years, he coordinated the addition of new features
and re-implemented the project to use the newer OCI version 8 for Oracle 8i and newer.

In 2005, Mr. Helfter joined DataPipe Inc., where he was responsible for supporting highly available Oracle
database services in a managed hosting environment utilizing Oracle RAC and other methods of HA computing.
In 2006 he was promoted to Senior Oracle DBA and is responsible for managing the Oracle database group.

Mr. Helfter's certifications include:

• Oracle 9i Database Administrator Certified Professional (OCP)
• Oracle 10g Database Administrator Certified Professional (OCP)
• Oracle 11g Database Administrator Certified Professional (OCP)
• Oracle Database 10g: Managing Oracle on Linux Certified Expert (OCE)
• Oracle Database 10g: Real Applications Clusters Administrator Certified Expert (OCE)

Revision 8 78

Glossary
logon-handle. The string value returned by oralogon used as the primary parameter for : oralogoff,
oraopen, oracommit, oraroll, oraautocom, oradesc, orastmlist and the special command oramsg. The logon-
handle refers to the top context for the database connection.

statement-handle The statement-handle is obtained as a return value from oraopen. It is the primary
parameter for: oraclose, oraparse, orabind, oraexec, orafetch, oracols, oralob, oralong, orasql, orabindexec,
oraplexec, and also the special command oramsg.

starkit A single file packaging of Tcl scripts, platform specific compiled code and application
data; designed to facilitate simple deployment of cross platform applications. The name comes from
STandAlone Runtime.

Revision 8 79

Index
A
Asynchronous · 23, 50, 66
B
BLOB · 56, 57
C
CLOB · 56, 57
M
Multithreading · 65
O
oraautocom · 28, 75
orabind · 30, 31, 32, 34, 35, 42, 44, 59, 66, 75
orabindexec · 23, 35, 58, 59, 75
oraclose · 28, 29, 30, 75
oracols · 45, 54, 60, 75
oracommit · 27
oraconfig · 35
oradesc · 52, 75
Oradesc · 52
oraexec · 33, 42
orafetch · 34, 42, 44
orainfo · 53
oraldalist · 53
oralob · 35, 56, 57, 75
oralogoff · 25, 26, 29, 75
oralogon · 20, 21, 22, 23, 24, 25, 29, 52, 53, 66, 75
oramsg · 47, 48, 49, 50, 51
oraopen · 25, 29, 31, 32, 33, 53, 55, 56, 59, 60, 66, 75
oraparse · 23, 29, 30, 31, 32, 33, 34, 42, 48, 55, 57, 59, 66, 75
oraplexec · 23, 35, 54, 60, 75
oraroll · 27, 28, 75
orasql · 23, 35, 54, 58, 59, 60, 75
R
Ref-cursor · 60
S
Starkit · 70
SYSASM · 22
SYSDBA · 22, 23
SYSOPER · 22, 23

Revision 8 80

	Extending TCL
	Oratcl Release History
	Minimum Requirements for proper Oratcl operation
	Tcl / Tk
	MS Windows XP, 2000, 2003
	ActiveTcl Installation
	Oracle Instant Client for Windows Installation

	Solaris 8,9 & 10
	Tcl Building and Installing
	Oratcl Building and Installing
	Oracle Instant Client for Solaris Installation

	RedHat Enterprise Linux 3, 4, 5
	Tcl rpm download and install for x86 linux
	Oratcl rpm download and install for x86 linux
	Oracle Instant Client for Linux Installation for x86 linux
	Tcl rpm download and install for x86-64 linux
	Oratcl rpm download and install for x86-64 linux
	Oracle Instant Client for Linux Installation for x86-64 linux

	Managing Oracle connections
	oralogon
	local connections
	remote connections using local naming (TNSNAMES)
	remote connections using Easy Connect
	SYSDBA, SYSOPER and SYSASM connections (Oratcl 4.5)
	local SYSDBA and SYSOPER connections (Oratcl 4.1 -> Oratcl 4.4)
	Additional options to oralogon
	Error codes and handling.

	oralogoff

	Managing Oracle transactions
	oracommit
	oraroll
	oraautocom

	Performing SQL Queries and DML Statements
	Oratcl statement-handle
	oraopen
	statement-handle limits

	oraclose
	oraparse
	orabind
	oraexec
	orafetch

	Altering Oratcl’s default behavior
	oraconfig

	Oracle DATE types
	Querying Date Fields
	Inserting and Updating Date Fields

	PL/SQL stored procedures
	PL/SQL REF CURSOR variables
	Oracle Error Handling and Introspection
	oramsg
	oradesc
	oraldalist
	oracols

	Oracle LONG and LONG RAW types
	Operations with BLOB and CLOB data types.
	oralob

	Historic Shortcut Commands
	orasql
	orabindexec
	oraplexec

	Slave Interpreters
	Array DML
	Multithreading
	Asynchronous Transaction Processing
	Makefile
	main.c
	test.tcl
	Case Study:
	MS Windows starkit using Oratcl and the Oracle instant client.

	Biography
	Glossary

